
Rosetta-ized MCL (�RMCL�) notes.

May 20, 2009

1 Background

Macintosh Common Lisp (MCL) is a PPC application; like many other CL
implementations, it depends on OS-level exception-handling facilities (to deal
with many lisp-level error conditions, to support fast memory allocation and
GC integration, to detect stack over�ow) as part of its normal execution model.
Apple's Rosetta translator does a very good job of allowing many PPC applica-
tions to run on x86 hardware at acceptable speeds; one way in which it achieves
good execution speed for translated code interferes with the ability of translated
applications to reliably handle machine exceptions that those applications gen-
erate. As a result, MCL has been unable to run under Rosetta (it dies as soon
as it generates an exception, which occurs very soon after it's launched.)

A Clozure customer contracted with us to port a legacy MCL application
to modern (x86-based) Macintosh hardware. Our original approach to this was
to try to provide an MCL-like compatibility layer in CCL, but for a variety of
reasons (including di�erences between MCL's and CCL's threading models and
FFIs and the degree to which the customer's application depended on MCL
internals) we began to have doubts about the viability of that approach. An-
other idea - changing MCL so that it would run under Rosetta, which we'd
previously dismissed as being too time-consuming - began to look more attrac-
tive. Eventually, we decided to switch to Plan B (eliminating MCL's use of
machine-level exceptions so that it would run under Rosetta). The result seems
to have been successful in that it allows our customer (and their customers)
to run their legacy MCL application on x86 Macintosh hardware. Since MCL
is licenced under the LLGPL, the results of that work (with full sources) are
provided here.

Since the goal of the project was to support the needs of a speci�c appli-
cation, we made some choices that may seem surprising at �rst glance. In
particular, we chose to use MCL 5.1b1 sources that I (gb) happened to have
installed on an old machine, leftover from a time when I was working with Dig-
itool to get MCL running on OSX. This choice was in�uenced by the facts that
our customer's application was known not to run on MCL 5.2 and that the 5.1b1
sources that I had were known to build a working MCL while it was not clear
that that was true of the released 5.2 sources. We later merged in some sources

1



that Digitool had released with 5.1 �nal; the result is that RMCL is a weird
hybrid of 5.1b1 and 5.1, and some things may di�er in behavior from anything
that Digitool released.

2 Build process

2.1 Kernel issues

MCL (including 5.2) is a CFM1 application; this is true regardless of whether
its FFI exposes functionality de�ned in CFM libraries and called via CFM
conventions or whether its FFI exposes functionality de�ned in native, Mach-
O libraries. On OSX, CFM applications are loaded into memory by a na-
tive helper application (�LaunchCFMApp�, which ordinarily resides in /Sys-
tem/Library/Frameworks/Carbon.framework/Versions/A/Support/). LaunchCFMApp
tries to �nd external CFM libraries that the CFM application is linked against
and resolve references to symbols de�ned in those libraries; if it's successful, it
transfers control to initialization and startup routines in the CFM executable.

MCL refers to a CFM library named �pmcl-kernel�, and its initialization and
startup routines call functions that're de�ned in that library. On traditional Ma-
cOS, this �le was �the kernel� and provided image loading and saving, exception
handling, and other services for the MCL application. On OSX, a separate
copy of the C kernel sources were compiled into a �native� kernel (compiled and
linked as a native Mach-O object �le and named �pmcl-OSX-kernel�), and the
fact that this native kernel could communicate with OSX more directly made
some things more reliable (though popular wisdom was that it could also have
the opposite e�ect); in that scheme, the CFM kernel was redundant if the native
kernel could be found and loaded, and the native kernel was (to some degree)
optional. In RMCL, the CFM kernel exists solely to load the native kernel and
doesn't o�er any other functionality, and the native kernel is mandatory. (The
CFM kernel also contains some other code and other resources, including the
�subprimitives�2.)

2.1.1 Building the CFM kernel

The little bit of C code in the CFM kernel (and the subprimitives and some of
the other resources) still need to be built with Apple's MPW tools, which are
available from http://developer.apple.com/tools/mpw-tools/. MPW is a
�Classic� PPC application and as such will only run on a PPC running Tiger or
earlier (on which the Classic environment and its dependencies are installed.)
At one point, the C sources to the �CFM� kernel had to be compiled with a
certain version of Stan Shebs' port of GCC to MPW. That version of GCC for
MPW doesn't seem to be available anymore; fortunately, there doesn't need to

1The shared library technology used in Classic MacOS was called the Code Fragment

Manager.
2compiler support routines that are written in assembly language

2



be much C code in the �CFM� kernel anymore, and the one �le that remains
(�pmcl/kernel-init.c�) can be compiled with the MPW mrc compiler.

To build the CFM kernel under MPW:

1. Launch the MPW Shell

2. Set MPW's working directory to RMCL's �pmcl� subdirectory; this can
be done via an entry on MPW's Directory menu.

3. Type CMD-B to invoke the �Build...� menu item on MPW's �Build� menu;
in the dialog box which results, type �install� and con�rm. This should
execute any commands needed to build �pmcl-kernel� from its sources and
install a copy of the newly built CFM kernel in the root RMCL directory.
The installation step may fail if the �le's in use, e.g., if a running copy of
RMCL is using the library.

2.1.2 Building the native kernel

The native kernel sources are in pmcl/OSX; they can be built with any version
of Apple's Xcode tools that target the PPC; the host system can be a PPC or
x86-based Macintosh. To build the native kernel in the OSX shell:

1. cd to the pcml/OSX directory

2. execute the command �make install�

That'll rebuild the �pmcl-OSX-kernel� library from its sources and copy the
result to the root RMCL directory.

2.2 Building the application

RMCL itself (the �le with the coral icon that one double-clicks on in the Finder)
is a tiny CFM application (that jumps into some entrypoints in pmcl-kernel)
and a larger heap image, both contained in the same �le.

Two very similar versions of the RMCL application are included in the dis-
tribution. �RMCL� itself is intended for daily use; �PPCCL� has essentially the
same contents, only it starts up in the CCL package and the features which
try to guard against accidental rede�nition of built-in functions are disabled;
PPCCL is intended to be used (primarily) for recompiling the lisp itself, since
both of these di�erences make that a bit easier.

In order to build a new version of RMCL (or PPCCL), it's necessary to
compile most of its source code into FASL �les, build a special bootstrapping
application (�ppc-boot�) from other source code (in the �level-0� subdirectory),
run that bootstrapping application which will load enough of the FASL �les to
display a listener and print a prompt, load a �le which causes the rest of the
FASL �les to load, optionally load a �le which arranges for *PACKAGE* to be
set to the CL-USER package and enables the anti-rede�nition mechanisms (for
RMCL), and use SAVE-APPLICATION to create a new PPCCL or RMCL. The

3



astute reader will note that there's no easy way to compile those FASL �les or
create the bootstrapping application without a (generally compatible) PPCCL
application; anyone who thinks that this kind of chicken-and-egg situation is at
all unusual is invited to try to build GCC from source on a machine that doesn't
have a working C compiler.

2.2.1 Compiling the sources

Launch PPCCL and do:

? (compile-ccl t)

That'll compile several dozen source �les and in some cases load the result-
ing FASL �les into the compilation environment. (Some �les, especially those
in the level-1 subdirectory, are explicitly not loaded into the compilation envi-
ronment.) There may be several warnings about functions and methods being
de�ned multiple times in multiple �les (these are expected parts of the [R]MCL
bootstrapping process) and there are currently a couple of warnings describing
calls to unde�ned functions: one of them has to do with saving lisp libraries and
... well, I don't remember what the other one's about, but it was present in the
random 5.1b1 sources that I started with.

This process will take a minute or two (depending on how fast the machine
is) and should �nish without errors; if you get an error during this stage, �gure
out why, �x it, and try again.

2.2.2 Building the bootstrapping image

In a PPCCL (you can do this before or after the previous step, or in a fresh
session), do:

? (xload-level-0 :force)

That'll compile a few dozen �les in the �level-0� directory, claim that it's �load-
ing� them (it's actually loading them into a special in-memory heap image),
and eventually write a small application named �ppc-boot� to the root RMCL
directory. There may be some cryptic messages during the emulated load stage
that claim that the plist of a symbol at some hex address is already set; these
messages generally indicate that some function or variable is de�ned multiple
times in the level-0 sources.

Because of the weird way that the �ppc-boot� application is built, the Finder
may become convinced that it's a Classic application (it isn't) or that it's com-
piled for an unsupported architecture (also not true.) Logging out and logging
back in again seems to be one way of getting the Finder to take a closer look at
the �le and reevaluate things.

2.2.3 Running the bootstrapping image

Double-click on �ppc-boot� in the Finder (see the last paragraph if that doesn't
work.) After a few seconds, MCL's menubar should appear and shortly after

4



that, a listener window should appear. To get to this stage, several FASL �les
have to have been loaded successfully, but (for historical reasons whose details
I don't remember) several other FASL �les still haven't been loaded into the
running lisp: some CL functionality isn't yet de�ned, some editor commands
and IDE features may not work yet, errors may or may not be handled gracefully.
To load the remaining �les, do:

? (require �PPC-INIT-CCL�)

If you want to save an �RMCL� (intended for CL development, starts in the
CL-USER package, guards against accidental rede�nition of built-in functions),
do:

? (require �PREPARE-MCL-ENVIRONMENT�)

then

? (save-application �RMCL�)

If you instead want to save a �PPCCL� (intended for RMCL development, starts
in the CCL package, allows rede�nition of built-in functions), do:

? (save-application �PPCCL�)

2.3 Build-time problems

A lot of things have to work correctly in order for any the bootstrapping program
(�ppc-boot�) to be able to display a listener window, respond to keystrokes and
other events, and generally behave itself; still more things need to work correctly
in order for any version of MCL to be able to report errors sanely and enter a
break loop. The bootstrapping application starts out as a fairly small subset of
a full lisp and becomes a larger subset as �les are loaded; code that needs to run
early in that loading sequence can't depend on functionality that's de�ned later
in the sequence and may therefore have to be written in a subset of CL. Errors
that occur early in the bootstrapping process may cause spectacular failures
and can be very di�cult to debug.

In MCL, some errors that occurred early in the bootstrapping process (aka
�the cold load�) triggered exceptions; if the kernel could recognize that the lisp
wasn't ready to handle the exception yet, a simple kernel debugger was entered.
Since RMCL can't use exceptions, this can't work. The only way that I know
of to debug problems that occur during this bootstrapping process is to use
GDB, and describing how to do that is way beyond the scope of this document.
Given the fragility of the cold load process, the best advice that can be o�ered
is to make changes to core MCL functionality as incrementally as possible (and
rebuild as often as possible during development) so that the likely cause of a
build failure can be easily isolated.

5



3 Known di�erences between RMCL and MCL

Some errors that may have o�ered restarts in MCL may not o�er those restarts
in RMCL. The wording of some error messages may be di�erent. (Both of these
changes have to do with the fact that traps and illegal instructions are no longer
used to signal errors in RMCL.)

MCL's stacks are (in some cases) �segmented� (composed of relatively small
chunks which are linked together and which may transparently over�ow when
a write-protected guard page is written to and the resulting exception is han-
dled.) A stack over�ow exception is signaled when the total size of all allocated
segments in a stack exceeds a given threshold; it's generally possible to continue
from this point with a new, larger threshold in e�ect. By contrast, RMCL's
stacks consist of a single generally much larger chunk, over�ow on them is de-
tected in software, and it's not possible to continue a computation with more
stack spave after over�ow has been detected. (There should be enough stack
space remaining after over�ow has been signaled to run a backtrace dialog to
try to determine the cause of non-terminating recursion, if that's what caused
the over�ow.)

4 Rosetta issues

We found (only) one outright Rosetta bug during the porting process. (On real
PPC hardware, �blr� and �bctr� instructions ignore the low two bits of the link
register (lr) and count register (ctr), respectively. MCL exploited this; RMCL
clears those bits in software, because Rosetta sometimes failed to ignore them.)

Rosetta likes to use the OS's disk cache to cache translated versions of PPC
functions; OSX likes to use otherwise unused physical memory for its disk cache.
Having more physical memory than running applications need can therefore
improve the performance of Rosetta applications.

In most cases, using exceptions to handle exceptional situations is cheaper
than doing that in software; the software-only approach may have to carry more
context around in general in order to be able to handle the exceptional case via
a function call, while the exception-based approach may be able to reconstruct
that context in cases where an exception was actually taken. There are of course
... um .. exceptions to this general rule: there's much more overhead associated
with handling write-protect faults on OSX than on other OSes, and MCL made
heavy use of write-protect faults (intentionally generated lots of them) as part of
its normal execution model. Avoiding intentional write-protect faults in RMCL
likely sped some things up; having to pass some extra arguments around or do
extra subroutine calls instead of conditional traps likely slowed some things in
RMCL down relative to MCL, and it's hard to say anything de�nitive about
whether RMCL or MCL is faster in general when running natively on a PPC.
(If there's a di�erence, it probably depends a lot on the code in question.)

It's hard to know how this a�ects performance of translated code running
under Rosetta, or (aside from the disk cache issue) what things do and do not

6



a�ect Rosetta performance.

7


