

Digitool

For
 Macintosh

Common Lisp
 versions
3.1 & 4.0

Macintosh Common Lisp
Reference

Digitool

030-1959-C
Developer Technical Publications
© Digitool, Inc. 1996

Digitool, Inc.
© 1996, Digitool, Inc. All rights
reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any
form or by any means,
mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Digitool, Inc.,
except in the normal use of the
software or to make a backup
copy of the software. The same
proprietary and copyright
notices must be affixed to any
permitted copies as were affixed
to the original. This exception
does not allow copies to be made
for others, whether or not sold,
but all of the material purchased
(with all backup copies) may be
sold, given, or loaned to another
person. Under the law, copying
includes translating into another
language or format. You may use
the software on any computer
owned by you, but extra copies
cannot be made for this purpose.
Printed in the United States of
America.
MCL is a trademark of
Digitool, Inc.
One Main Street,
Cambridge, MA 02142
617-441-5000
The Apple logo is a registered
trademark of Apple Computer,
Inc. Use of the “keyboard” Apple
logo (Option-Shift-K) for
commercial purposes without
the prior written consent of
Apple may constitute trademark
infringement and unfair
competition in violation of
federal and state laws.
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
408-996-1010
Apple, the Apple logo, the Apple
Developer Catalog (formerly
APDA), AppleLink, A/UX,
LaserWriter, Macintosh, and
MPW are trademarks of Apple
Computer, Inc., registered in the
United States and other
countries.
Balloon Help, Finder,

QuickDraw, and ToolServer are
trademarks of Apple Computer,
Inc.
Adobe, Acrobat and PostScript
are registered trademarks of
Adobe Systems Incorporated.
CompuServe is a registered
trademark of CompuServe, Inc.
Palatino is a registered
trademark of Linotype
Company.
Internet is a trademark of Digital
Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.
Microsoft is a registered
trademark of Microsoft
Corporation.
UNIX is a registered trademark
of UNIX System Laboratories,
Inc.
Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects
in the manual or in the media on
which a software product is
distributed, Digitool will replace
the media or manual at no charge
to you provided you return the
item to be replaced with proof of
purchase to Digitool.
ALL IMPLIED WARRANTIES
ON THIS MANUAL,
INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF
THE ORIGINAL RETAIL
PURCHASE OF THIS
PRODUCT.
Even though Digitool has
reviewed this manual,
DIGITOOL MAKES NO
WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS

IS,” AND YOU, THE
PURCHASER, ARE
ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY
AND ACCURACY.
IN NO EVENT WILL
DIGITOOL BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL
DAMAGES RESULTING
FROM ANY DEFECT OR
INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.
THE WARRANTY AND
REMEDIES SET FORTH
ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS
OR IMPLIED. No Digitool
dealer, agent, or employee is
authorized to make any
modification, extension, or
addition to this warranty.
Some states do not allow the
exclusion or limitation of implied
warranties or liability for
incidental or consequential
damages, so the above limitation
or exclusion may not apply to
you. This warranty gives you
specific legal rights, and you may
also have other rights which vary
from state to state.

Contents

Contents / 3

Figures and tables / 15

Introduction:
About This Book / 21
Documentation conventions / 22

Courier font / 22
Italics / 22
Definition formats / 22
Definition formats of CLOS generic functions / 24
The generic function initialize-instance / 25
Argument list punctuation / 25
Lisp syntax / 26

Chapter 1:
Editing in Macintosh Common Lisp / 29
The MCL editor / 31
The editing window / 32
Working with the editor / 33

Creating new windows and opening files / 33
Adding text to a file / 33
Saving text to files / 33
Multiple Panes / 34
The minibuffer / 35
The kill ring and the Macintosh Clipboard / 35
Multiple fonts / 36
Packages / 36

Mode lines / 37
An in-package expression / 37
A set-window-package expression / 38
Finding a window’s package / 38

Fred parameters / 38
Normalizing *next-screen-context-lines* / 40

Editing in Macintosh style / 41
Editing in Emacs style / 42
3

The Control and Meta modifier keys / 42
Disabling dead keys / 43

Fred commands / 43
Help, documentation, and inspection functions / 45
Movement / 46
Selection / 49
Insertion / 52
Deletion / 55
Lisp operations / 57
Window and file operations / 59
Undo commands / 60
Numeric arguments / 61
Incremental searching in Fred / 61

Performing an incremental search / 62
Making additional searches / 62
Backing up with the Delete key / 62
Terminating an incremental search / 63
Doing another incremental search / 63
Special incremental search keystrokes / 64

The Fred Commands tool / 65
The Listener Commands tool / 66
The List Definitions tool / 66
The Search Files tool / 67

Chapter 2:
Points and Fonts / 69
Points / 70

How Macintosh Common Lisp encodes points / 70
MCL functions relating to points / 71
Fonts / 74

Implementation of font specifications / 74
Implementation of font codes / 75
Functions related to font specifications / 76
Functions related to font codes / 80

System data / 87

Chapter 3:
Menus / 91
How menus are created / 93
A sample menu file / 93
4 Macintosh Common Lisp Reference

The menu-element class / 94
The menubar / 94

Menubar forms / 94
The built-in menus / 96
Menubar colors / 98

Menus / 100
MCL forms relating to menus / 100
MCL forms relating to elements in menus / 104
MCL forms relating to colors of menu elements / 106
Advanced menu features / 108

Menu items / 110
MCL forms relating to menu items / 111
MCL forms relating to menu item colors / 118

Window menu items / 120
Window menu item functions / 121
Window menu item class / 122

Updating the menubar / 123
The Apple menu / 124
Example: A font menu / 124

Chapter 4:
Views and Windows / 125
Views and Windows / 126

What simple views do / 126
What views do / 127
What windows do / 127
Class hierarchy of views / 128
Summary / 129
For more information / 130

MCL expressions relating to simple views and views / 130
Windows / 153

MCL functions for programming windows / 154
Advanced window features / 173

Supporting standard menu items / 178
Floating windows / 180

Chapter 5:
Dialog Items and Dialogs / 183
Dialogs in Macintosh Common Lisp / 185

Dialog items / 185
Contents 5

Dialog boxes / 185
A simple way to design dialogs and program dialog items / 186
Changes to dialogs in Macintosh Common Lisp as of version 2 / 186

Dialog items / 188
MCL forms relating to dialog items / 189
Advanced dialog item functions / 198
Specialized dialog items / 202

Buttons / 202
Default buttons / 203
Static text / 205
Editable text / 206
Checkboxes / 212
Radio buttons / 213
Table dialog items / 216
Pop-up menu dialog items / 227
Scroll-bar dialog items / 228
Sequence dialog items / 234

User-defined dialog items / 236
Dialogs / 237

Modal dialogs / 238
Modeless dialogs / 239

Simple turnkey dialog boxes / 239
MCL forms relating to dialogs / 245

Chapter 6:
Color / 249
Color encoding in Macintosh Common Lisp / 250
MCL expressions governing color / 250
Operations on color windows / 257

Coloring user interface objects / 259
Part keywords / 260

Menu bar / 261
Menus / 261
Menu items / 261
Windows / 262
Dialog items / 262
Table dialog items / 262
6 Macintosh Common Lisp Reference

Chapter 7:
The Interface Toolkit / 263
The Interface Toolkit / 264
Loading the Interface Toolkit / 264
Editing menus with the Interface Toolkit / 265

Using the menu editing functionality / 265
Creating a new menu bar: Add New Menubar / 267
Getting back to the default menu bar: Rotate Menubars / 267
Deleting a menu bar: Delete Menubar / 268
Creating and editing menus: Add Menu / 268
Creating menu items / 268
Editing menu items / 269
Saving a menu bar / 270
Editing menu bar source code / 270

Editing dialogs with the Interface Toolkit / 271
Using the dialog-designing functionality / 272
Dialog-designing menu items / 272
Creating dialog boxes / 273
Adding dialog items / 275
Editing dialog items / 276

Chapter 8:
File System Interface / 279
Filenames, physical pathnames, logical pathnames, and namestrings / 280

Changes from earlier versions of Macintosh Common Lisp / 280
Printing and reading pathnames / 281

Pathname structure / 282
Macintosh physical pathnames / 283
Common Lisp logical pathnames / 283
Defining logical hosts / 284
Ambiguities in physical and logical pathnames / 284
More on namestrings and pathnames / 285

Creating and testing pathnames / 285
Parsing namestrings into pathnames / 288
The pathname escape character / 289

Loading files / 291
Macintosh default directories / 293
Structured directories / 295
Wildcards / 298
File and directory manipulation / 299
Contents 7

File operations / 302
Volume operations / 306

User interface / 308
Logical directory names / 310

Chapter 9:
Debugging and Error Handling / 313
Debugging tools in Macintosh Common Lisp / 314
Compiler options / 315
Fred debugging and informational commands / 317
Debugging functions / 320
Error handling / 327

Functions extending Common Lisp error handling / 328
Break loops and error handling / 329

Functions and variables for break loops and error handling / 332
Stack Backtrace / 334
Single-expression stepper / 337
Tracing / 338

The Trace tool / 339
Expressions used for tracing / 341

Advising / 346
The Inspector / 348

The Inspector menu / 349
Inspector functions / 350

The Apropos tool / 351
The Get Info tool / 353
The Processes tool / 355
Miscellaneous Debugging Macros / 355

Chapter 10:
Events / 359
Implementation of events in Macintosh Common Lisp / 360
How an event is handled / 360
MCL built-in event handlers / 361
Functions for redrawing windows / 369
Event information functions / 372
The event management system / 375
The cursor and the event system / 379
Event handlers for the Macintosh Clipboard / 383
MCL expressions relating to scrap handlers and scrap types / 384
8 Macintosh Common Lisp Reference

The Read-Eval-Print Loop / 387
Eval-Enqueue / 388

Chapter 11:
Apple Events / 391
Implementation of Apple events / 392
Applications and Apple Events / 392
Application class and built-in methods / 394
New application methods / 397
Standard Apple event handlers / 400
Defining new Apple events / 404

Installing Apple event handlers / 406
Installing handlers for queued Apple event replies / 407

Sending Apple events / 409

Chapter 12:
Processes / 411
Processes in Macintosh Common Lisp / 412
Process priorities / 413
Creating processes / 413
Process attribute functions / 415
Run and arrest reason functions / 418
Starting and stopping processes / 422
Scheduler / 424
Locks / 428
Stack groups / 433
Miscellaneous Process Parameters / 436

Chapter 13:
Streams / 437
Implementation of streams / 438
MCL expressions relating to streams / 438
Obsolete functions / 450

Chapter 14:
Programming the Editor / 451
Fred Items and Containers / 453

Fred windows and Fred views / 454
Fred dialog items / 454
Buffers and buffer marks / 455
Copying and deletion mechanism: The kill ring / 456
Contents 9

MCL expressions relating to buffer marks / 456
Using multiple fonts / 472

Global font specifications / 472
Style vectors / 473

Functions for manipulating fonts and font styles / 473
Fred classes / 478
Fred functions / 486
Functions implementing standard editing processes / 506

Multiple-level Undo / 508
Functions relating to Undo / 509

Working with the kill ring / 512
Functions for working with the kill ring / 513
Using the minibuffer / 514
Functions for working with the minibuffer / 514

Defining Fred commands / 516
Fred command tables / 517

Keystroke codes and keystroke names / 517
Command tables / 519
Fred dispatch sequence / 519
MCL expressions associated with keystrokes / 519
MCL expressions relating to command tables / 523

Chapter 15:
Low-Level OS Interface / 529
Interfacing to the Macintosh / 530
Macptrs / 531
Memory management / 532

Stack blocks / 533
Accessing memory / 534

Miscellaneous routines / 545
Strings, pointers, and handles / 545
Pascal VAR arguments / 549
The Pascal null pointer / 549
Callbacks to Lisp from the OS and other code / 550
Defpascal and Interrupts / 552

Chapter 16:
OS Entry Points and Records / 553
Entry Points and Records / 555

References to entry points and records / 555
10 Macintosh Common Lisp Reference

Loading and Calling Entry Points / 556
Calling entry points / 556

Traps in MCL 3.1 / 558
Shared Library Entry Points in MCL 4.0 / 559

Locating Entry Points in Shared Libraries / 560
Locating Shared Libraries / 561
Compile Time / Run Time Entry Location / 561

Defining Traps / 562
Examples of calling entry points / 564
Entry point types and Lisp types / 565

Records / 567
Installing record definitions / 567
The structure of records / 568
Defining record types / 568
Variant fields / 571

Creating records / 572
Creating temporary records with rlet / 572
Creating records with indefinite extent / 574

Accessing records / 576
Getting information about records / 583
Trap calls using stack-trap and register-trap / 586

Low-level stack trap calls / 586
Low-level register trap calls / 588
Macros for calling traps / 589

Notes on trap calls / 594
32-bit immediate quantities / 594
Boolean values: Pascal true and false / 594

Chapter 17:
Foreign Function Interface / 597
Accessing Foreign Code in MCL 4.0 and 3.1 / 598
Foreign Code in MCL 4.0 / 598

Defining foreign code entry points / 598
Foreign Code in MCL 3.1 / 600

Using the MCL 3.1 foreign function interface / 600
High-level Foreign Function Interface operations / 600

Argument specifications / 604
Result flags / 608
A Short example / 609

Low-level functions / 610
Contents 11

Calling Macintosh Common Lisp from foreign functions / 613
Extended example / 615

Appendix A:
Implementation Notes / 617
The Metaobject Protocol / 619

Metaobject classes defined in Macintosh Common Lisp / 619
Unsupported metaobject classes / 621
Unsupported Introspective MOP functions / 621
MCL functions relating to the Metaobject Protocol / 622

MCL class hierarchy / 633
Types and tag values / 633

Tags in MCL 3.1 / 633
Tags in MCL 4.0 / 634
Raw Object Access / 635

Reader macros undefined in Common Lisp / 636
Numeric arguments in pathnames / 636
Numbers / 636

Floating point numbers in MCL 4.0 / 638
Characters and strings / 640
Ordering and case of characters and strings / 641
The script manager / 642

Script manager utilities / 642
String lengths / 643

Arrays / 645
Default array contents / 645
Array element types and sizes / 645

Packages / 648
Additional printing variables / 649
Memory management / 650
Garbage collection / 650

Ephemeral garbage collection / 650
Guidelines for enabling the EGC / 651
EGC in MCL 3.1 / 651
Controlling the EGC / 652
Enabling the EGC programmatically / 653

Full garbage collection / 654
Garbage Collection Statistics / 654

Termination / 656
Termination in MCL 4.0 / 656
12 Macintosh Common Lisp Reference

Termination in MCL 3.1 / 659
Macptrs and termination in MCL 3.1 / 660

Evaluation / 661
Compilation / 661

Tail recursion elimination / 662
Self-referential calls / 662
Compiler policy objects / 662

Listener Variables / 667
Patches / 668
Miscellaneous MCL expressions / 669

Appendix B:
Workspace Images / 673
The Image Facility / 674
The Save Application tool / 674
The Save Image Command / 676
Forms Related to Images / 676

Removing Macintosh pointers / 679

Appendix C:
SourceServer / 683
SourceServer / 684

Setting up SourceServer / 684
The SourceServer menu / 685

Notes / 686

Appendix D:
QuickDraw Graphics / 687
QuickDraw in Macintosh Common Lisp / 688
Windows, GrafPorts, and PortRects / 688
Points and rectangles / 689
Window state functions / 691
Pen and line-drawing routines / 693
Drawing text / 701
Calculations with rectangles / 701
Graphics operations on rectangles / 706
Graphics operations on ovals / 709
Graphics operations on rounded rectangles / 712
Graphics operations on arcs / 715
Regions / 718

Calculations with regions / 721
Contents 13

Graphics operations on regions / 724
Bitmaps / 726
Pictures / 728
Polygons / 730
Miscellaneous procedures / 733

Appendix E:
MCL 4.0 CD Contents / 739
What is on the MCL 4.0 CD-ROM / 740

Highlights / 740
MCL 4.0 / 740
MCL 3.1 / 740
MCL 4.0 "Demo Version" / 740
MCL 4.0/3.1 Documentation / 741
MCL Floppy Disks / 741
Additional MCL Source Code / 741
Goodies from Digitool / 741
Goodies from MCL Friends / 742
User Contributed Code / 742
Developer Essentials / 742
Mail Archives & Other Docs / 742
Contents/Index / 742
On Location Indexes / 743

What is in the MCL 4.0 folder / 743
MCL 4.0 / 743
MCL Help and MCL Help Map.pfsl / 743
Examples Folder / 743
Interface Tools folder / 747
Library folder / 747
ThreadsLib / 748
pmcl-kernel, pmcl-library, and pmcl-compiler / 748

Index / 749
14 Macintosh Common Lisp Reference

Figures and tables

Contents / 3

Figures and tables / 15

Introduction:
About This Book / 21

Chapter 1:
Editing in Macintosh Common Lisp / 29
Figure 1-1 A Fred window / 32
Figure 1-2 A Fred window with multiple panes / 34
Table 1-1 Fred parameters / 39
Table 1-2 Fred commands for help, documentation, and inspection / 45
Table 1-3 Fred commands for movement / 47
Table 1-4 Fred commands for selection / 49
Table 1-5 Fred commands for insertion / 52
Table 1-6 Fred commands for deletion / 55
Table 1-7 Fred commands for Lisp operations / 57
Table 1-8 Fred commands for window and file operations / 59
Table 1-9 Fred commands for undoing commands / 60
Table 1-10 Fred commands for giving numeric arguments / 61
Table 1-11 Fred commands for searching / 64
Figure 1-3 The Fred Commands dialog box / 65
Figure 1-4 The Listener Commands dialog box / 66
Figure 1-5 The List Definitions dialog box / 67
Figure 1-6 The Search Files dialog box / 68
Figure 1-7 Dialog box after a successful search / 68

Chapter 2:
Points and Fonts / 69

Chapter 3:
Menus / 91
Table 3-1 Window menu items / 121
15

Chapter 4:
Views and Windows / 125
Figure 4-1 The class hierarchy of views from simple-view downward / 129

Chapter 5:
Dialog Items and Dialogs / 183
Table 5-1 Summary of changed dialog functions in Macintosh Common

Lisp / 187
Figure 5-1 Examples of tables used in dialog boxes / 216
Figure 5-2 Cell positions represented as points / 217
Figure 5-3 A modal dialog (Print Options on the Tools menu) / 237
Figure 5-4 A modeless dialog (List Definitions on the Tools menu) / 238
Figure 5-5 A message dialog box / 240
Figure 5-6 A yes-or-no dialog box / 242
Figure 5-7 A get-string-from-user dialog box / 243
Figure 5-8 A select-item-from-list dialog box / 245

Chapter 6:
Color / 249

Chapter 7:
The Interface Toolkit / 263
Figure 7-1 The Interface Toolkit menu on the menu bar / 265
Figure 7-2 Choosing Edit Menubar from the Design menu / 266
Figure 7-3 The Menubar Editor window / 266
Table 7-1 Menubar Editor window options / 267
Figure 7-4 A Menu Editor window showing a menu with no items / 268
Table 7-2 Menu editing options / 269
Figure 7-5 Editing items in the Menu Editor / 269
Table 7-3 Menu item editing options / 270
Table 7-4 Menu items and corresponding MCL codes / 271
Table 7-5 Dialog design menu items / 273
Figure 7-6 New Dialog dialog box / 274
Table 7-6 Seven types of dialog / 274
Table 7-7 Two attributes of dialog boxes / 275
Figure 7-7 Dragging an editable-text dialog item into an untitled dialog box

/ 275
Figure 7-8 Edit Dialog Items dialog box / 276
Table 7-8 Editable options in dialog items / 277
Table 7-9 Editable options in subclasses of dialog items / 278
16 Macintosh Common Lisp Reference

Chapter 8:
File System Interface / 279
Table 8-1 Some namestrings parsed into pathnames / 289
Table 8-2 Effect of escape characters / 290

Chapter 9:
Debugging and Error Handling / 313
Figure 9-1 MCL debugging tools / 314
Table 9-1 Compiler options / 316
Table 9-2 Fred debugging and informational commands / 318
Table 9-3 Constructs and their documentation types / 324
Figure 9-2 Effects on the stack of break, abort, and continue / 329
Figure 9-3 Nesting of break loops / 331
Figure 9-4 Two ways to leave a break loop / 332
Figure 9-5 A Stack Backtrace dialog box / 335
Figure 9-6 The Trace dialog box / 340
Table 9-4 Options in Inspector Central / 349
Figure 9-7 The Apropos dialog box / 352
Figure 9-8 The Get Info dialog box / 354
Figure 9-9 The Get Info modal dialog box / 354
Figure 9-10 The Processes Inspector window / 355

Chapter 10:
Events / 359

Chapter 11:
Apple Events / 391

Chapter 12:
Processes / 411

Chapter 13:
Streams / 437

Chapter 14:
Programming the Editor / 451
Table 14-1 Modifier bits in the keystroke code / 518
Figures and tables 17

Chapter 15:
Low-Level OS Interface / 529

Chapter 16:
OS Entry Points and Records / 553
Table 16-1 Pascal types and their equivalent MCL types / 566
Table 16-2 Predefined record field types and their lengths / 570

Chapter 17:
Foreign Function Interface / 597
Table 17-1 Foreign type defaults / 606

Appendix A:
Implementation Notes / 617
Table A-1 Structure of metaobject classes defined in Macintosh Common

Lisp version 2 / 619
Table A-2 Types of array element / 646
Table A-3 Theoretical limits on array length / 647
Table A-4 Additional printing variables / 649

Appendix B:
Workspace Images / 673
Figure 1-10 The Save Application dialog box / 675

Appendix C:
SourceServer / 683

Appendix D:
QuickDraw Graphics / 687
Figure D-1 Location of point at upper-left corner of pixel / 689
Figure D-2 A PortRect / 690
Figure D-3 Multiple methods of passing rectangles / 692
Figure D-4 Attributes of a graphics pen / 694
Figure D-5 QuickDraw pen sizes / 696
Figure D-6 Pen pattern stored as a 64-bit block of memory / 697
Figure D-7 Effect of pen modes on pixels being drawn / 698
Figure D-8 Offset rectangle, with h equal to 4 and v equal to 2 / 702
Figure D-9 Inset rectangle, with h equal to 4 and v equal to 2 / 703
Figure D-10 Rectangle resulting from the intersection of two others / 703
Figure D-11 Smallest rectangle completely enclosing two others / 704
Figure D-12 Point to angle, calculated from two rectangles / 705
Figure D-13 Rectangle framed in the current pen / 707
18 Macintosh Common Lisp Reference

Figure D-14 Effects of paint-rect and invert-rect / 708
Figure D-15 An oval within a rectangle / 709
Figure D-16 Rounded rectangle / 712
Figure D-17 Framing an arc / 716
Figure D-18 Regions / 719
Figure D-19 A rectangle scrolled down and to the right / 728
Figure D-20 A framed polygon / 732
Figure D-21 Effect of map-point / 735
Figure D-22 Effect of map-rect / 736

Appendix E:
MCL 4.0 CD Contents / 739

Index / 749
Figures and tables 19

20 Macintosh Common Lisp Reference

21

Introduction:

About This Book

Contents

Documentation conventions / 22
Courier font / 22
Italics / 22
Definition formats / 22
Definition formats of CLOS generic functions / 24
The generic function initialize-instance / 25
Argument list punctuation / 25
Lisp syntax / 26

This introduction describes the syntax and notational conventions used in this
reference.

Documentation conventions

This manual follows specific conventions for fonts, notation, Lisp
syntax, and definition formats.

Courier font

In this manual, all MCL code appears in Courier font. When an MCL
interaction is shown, what you type appears in boldface Courier and
what MCL responds with is shown in regular Courier.

Courier font always represents exactly what is typed into and returned
by the program, with one exception. In the syntax of definitions, words
in Courier beginning with an ampersand (lambda list keywords)
indicate certain standard parts of the body of a definition. For example,
&key indicates that the items following it are keywords, &optional
indicates that all arguments past that point are optional, and so on.

See Common Lisp: The Language for a full description of this syntax.

Italics

Italics indicate parameter names and place holders (words that you
replace on the screen with an actual value). For example, when using
the function my-function, you see the definition

my-function my-arg &optional more-info &key :test

Type the words my-function and :test as they appear, but
substitute some value for my-arg and more-info.

Definition formats

The same definition format is used for functions, methods, variables,
named constants, classes, macros, and special forms.
22 Macintosh Common Lisp Reference

The header indicates the name and type of the definition. In the case of
a function, for example, the first line indicates the name of the function
and the fact that it is a function. Its syntax appears below its name and
type; it is described; its parameters are defined; finally, in many cases,
it is used in an example.

A definition format always includes a description of the item being
defined; where appropriate, it also shows its syntax, includes a
description of its arguments, and gives an example of its use. Here are
some abridged examples of definition formats.

pop-up-menu [Class name]

Description This is the class of pop-up menus, built on the classes menu and dialog-
item.

fred-default-font-spec [Variable]

Description The *fred-default-font-spec* variable specifies which font is used
when new Fred (editor) windows are opened. The initial value is
("Monaco" 9 :PLAIN).

with-focused-view [Macro]

Syntax with-focused-view view {form}*

Description The with-focused-view macro executes forms with the current
GrafPort set for drawing into view.

Arguments view A view installed in a window, or nil. If nil, the current
GrafPort is set to an invisible GrafPort.

form Zero or more forms to be executed with the current view
set.

Example

Here is an example of using with-focused-view to paint a round-
cornered rectangle within a window window1, using the Macintosh
trap #_PaintRoundRect:
(rlet ((r :rect :top 20 :left 20 :bottom 80 :right 60))

 (with-focused-view window1

 (#_paintroundrect r 30 30)))
Introduction: About This Book 23

find-window [Function]

Syntax find-window title &optional class

Description The find-window function returns the frontmost window of the class
class for which a prefix of the window’s title is string-equal to title. If
no window has title as its title, nil is returned.

Arguments title A string specifying the title of the window to search for.
class A class used to filter the result. (The &optional in the

syntax means that this argument is optional.)

Definition formats of CLOS generic functions

Like a function, a CLOS generic function specifies a procedure, but the
generic function is specialized on the class of the instance to which it is
applied. Thus a generic function may have more than one primary
method. The provided methods of generic functions are listed in the
“Syntax” section of the definition. Their syntax includes a procedure for
matching the instance to a class.

set-view-position [Generic function]

Syntax set-view-position (view simple-view) h &optional v

Description The set-view-position generic function sets the position of the view
in its container.

The positions are given in the container’s coordinate system.

Arguments view A view or simple view, but not a window.
h The horizontal coordinate of the new position, or the

complete position (encoded as an integer) if v is nil or not
supplied.

v The vertical coordinate of the new position, or nil if the
complete position is given by h.

Example

This code sets the position of checkbox, a checkbox dialog item, in the
view ed.
? (setf checkbox (make-instance 'check-box-dialog-item))

#<CHECK-BOX-DIALOG-ITEM #x4CF721>

? (set-view-position checkbox #@(20 20))
24 Macintosh Common Lisp Reference

1310740

The generic function initialize-instance

The generic function initialize-instance, which is called by the
function that creates an instance, also typically has a number of
initialization arguments, which specify properties of the object instance
and their initial values. These are documented among the arguments.

(Note that the function you call to create an instance is make-
instance; make-instance calls initialize-instance.)

initialize-instance [Generic function]

Syntax initialize-instance (dialog-item dialog-item) &rest
initargs

Description The initialize-instance primary method for dialog-item
initializes a dialog item.

Arguments dialog-item A dialog item.
initargs A list of keywords and default values used to initialize a

dialog item. The initargs keywords for all dialog items are:
:view-size

The size of the dialog item.
:view-position

The position in the dialog box where the item will be
placed, in the coordinate system of its container.

Argument list punctuation

Macintosh Common Lisp follows the notational conventions of
Common Lisp. Argument lists use punctuation, such as parentheses,
braces, and brackets, in special ways:

■ Brackets [] indicate that anything they enclose is optional. This means
that anything within them may appear once or not at all.

■ Braces {} followed by an asterisk * mean that whatever they enclose
may appear any number of times or not at all; everything within the
braces is interpreted as a group.
Introduction: About This Book 25

■ Braces{} followed by a plus sign + mean that whatever they enclose
may appear multiple times but must appear at least once.

■ A vertical bar | inside braces or brackets separates mutually exclusive
choices. The group may be composed of a set from one side of the bar
or from the other.

■ Double brackets [[]] indicate that any number of the enclosed
alternatives may appear, and in any order, but that each alternative
may be used at most once unless followed by an asterisk.

■ A downward arrow ↓ precedes a syntactic variable that will be
subsequently defined.

Lisp syntax

Macintosh Common Lisp follows the syntactic conventions of Common
Lisp; the complete Common Lisp syntax is described in Chapter 22 of
the second edition of Common Lisp: The Language.

The following are some general characteristics of Lisp syntax:

■ An open parenthesis (also called left parenthesis) begins a list of items.

■ A close parenthesis (also called right parenthesis) ends a list of items.

Nested lists are enclosed in nested parentheses:
 (like (these))

■ A single quote (also called acute accent or apostrophe) followed by an
expression form is an abbreviation for (quote form).

The expression 'foo means (quote foo) and the expression '(cons
'a 'b) means (quote (cons (quote a) (quote b))).

■ A semicolon signals a comment. The semicolon and all characters
following it up to the end of the line are ignored. A newline signals the
end of the comment:

 (Here is Lisp code) ;Here is a comment,

 ;which continues here.

(and here is Lisp code again)

■ Quotation marks, also called double quotes, surround character
strings:

"like this"

■ A backslash \, the escape character, causes the next character to be
treated as a letter rather than syntactically. For example, \{ indicates
the character for a left brace.

■ Vertical bars in pairs || surround the name of a symbol with many
special characters. Surrounding some characters with vertical bars is
roughly equivalent to putting a backslash before each of the characters.
26 Macintosh Common Lisp Reference

■ A number sign #, also called a hash mark, signals the beginning of a
complicated syntactic structure. The next character designates the
syntactic structure to follow. For example, #b1001 means 1001 in
binary notation; #(foo bar baz) denotes a vector of three elements,
foo, bar, and baz; #\A denotes the character object A; #P"foo:bah"
indicates the pathname "foo:bah"; and #'function means
(function function).

■ A grave accent ̀ (also called a backquote) is used together with commas
to describe templates. The backquote syntax represents a program that
will construct a data structure; commas are used within backquote
syntax.

■ A colon is used to indicate the package of a symbol. For instance,
lisp:dialog-item-size denotes the symbol dialog-item-
size in the package named lisp.
Introduction: About This Book 27

28 Macintosh Common Lisp Reference

Chapter 1:

Editing in Macintosh Common Lisp

Contents

The MCL editor / 31
The editing window / 32
Working with the editor / 33

Creating new windows and opening files / 33
Adding text to a file / 33
Saving text to files / 33
Multiple Panes / 34
The minibuffer / 35
The kill ring and the Macintosh Clipboard / 35
Multiple fonts / 36
Packages / 36

Mode lines / 37
An in-package expression / 37
A set-window-package expression / 38
Finding a window’s package / 38

Fred parameters / 38
Normalizing *next-screen-context-lines* / 40

Editing in Macintosh style / 41
Editing in Emacs style / 42

The Control and Meta modifier keys / 42
Disabling dead keys / 43

Fred commands / 43
Help, documentation, and inspection functions / 45
Movement / 46
Selection / 49
Insertion / 52
Deletion / 55
Lisp operations / 57
Window and file operations / 59
Undo commands / 60
Numeric arguments / 61
Incremental searching in Fred / 61
29

Performing an incremental search / 62
Making additional searches / 62
Backing up with the Delete key / 62
Terminating an incremental search / 63
Doing another incremental search / 63
Special incremental search keystrokes / 64

The Fred Commands tool / 65
The Listener Commands tool / 66
The List Definitions tool / 66
The Search Files tool / 67

This chapter describes tools available for editing in MCL. It discusses Fred, the
MCL text editor, as well as a number of additional tools which are helpful in
editing text.

Fred combines the standard Macintosh multiple-window text editor with
Emacs, the fully programmable editor that is a feature of most Lisp
implementations. “Fred” is an acronym for “Fred Resembles Emacs
Deliberately.”

If you are familiar with other Macintosh editors, you can begin editing in
Macintosh Common Lisp immediately. However, Fred is much more powerful
than most Macintosh editors. This chapter describes basic Fred concepts and
keyboard editing shortcuts.

Since Fred is written in Macintosh Common Lisp, it is completely
programmable. If you wish to change or extend it, you should read Chapter 14:
Programming the Editor.
30

The MCL editor

Fred combines a standard Macintosh editor with Emacs, the fully
programmable editor, optimized for Lisp programming, that is a
feature of most Lisp implementations.

If you are familiar with other Macintosh editors, you can begin editing
in Macintosh Common Lisp immediately. However, Fred has many
more, and more powerful, features than the general run of Macintosh
editors, and it has special features for programming Lisp.

■ Fred includes many specialized Lisp manipulation commands. For
example, you can select complete or partial symbolic expressions,
move from level to level of a symbolic expression, reindent them, get
their documentation and argument list, and inspect them, all with
simple keyboard commands.

 Lisp expressions can be executed from Fred windows by pressing
Enter (that is, the Enter key on the numeric keypad, not the Return
key) with the cursor position at either end of a top-level expression.
You can also highlight an expression and press Command-E.

 Placing the insertion point after a close parenthesis, or before an
open parenthesis, causes the matching parenthesis to blink. For
example, placing the insertion point after a close parenthesis causes
the matching open parenthesis to blink. This feature is very helpful
in balancing parentheses.

 Double-clicking after a close parenthesis, or before an open
parenthesis, highlights to the matching parenthesis. For example,
double-clicking before an open parenthesis highlights forward to
the matching close parenthesis. This is another quick way to check
the balance of your parentheses.

 Pressing Tab after a Return indents the new line appropriately.

 Pressing Control-Meta-Q reindents the current expression in a
readable way.

 Pressing Meta–close parenthesis moves the cursor into position for
typing the next expression.

 Other Fred commands get information on the argument list of a
function or its documentation, inspect it, and edit its source file.
Most of these are available both on the “Tools” menu and as
keyboard commands.

■ Fred has online documentation of its own commands. Choose Fred
Commands from the “Tools” menu to see a window of all Fred
commands.

■ Fred supports right-to-left as well as left-to-right editing. For
information on using this feature, see the :line-right-p
initialization arguments of the fred-window and fred-dialog-
item classes.
Chapter 1: Editing in Macintosh Common Lisp 31

■ Since Fred is written in Macintosh Common Lisp, it is completely
programmable. For example, the file escape-key.lisp in the MCL
Examples folder binds the Macintosh Escape key to Meta.

The editing window

Figure 1-1 describes the parts of an editor window. At the top, in the
title bar, is the pathname of the file contained in the window. The main
body of the window contains the text of the file which is being edited.
At the bottom of the window, the minibuffer displays the name of the
window’s package and other information.

■ Figure 1-1 A Fred window

Mark showing that the window has
been modified since the last save

Window title showing pathname
of edited file

Current
package

Other minibuffer information
32 Macintosh Common Lisp Reference

Working with the editor

This section gives general information on using the editor.

Creating new windows and opening files

To create a new file, press Command-N or choose “New” from the
“File” menu. To open an already existing file, press Command-O or
choose “Open” from the “File” menu.

Adding text to a file

Fred works with a mouse and the keyboard, just like other Macintosh
text editors such as BBEdit. However, it understands Lisp and Lisp
formatting better than those text editors. Specific editing instructions
are given in the sections “Editing in Emacs style” on page 42 and “Fred
commands” on page 43.

Saving text to files

To save the contents of a window, you can use the Command-S
command or choose “Save” from the “File” menu. To save the contents
under another name, choose the “Save As…” command from the “File”
menu.

A small cross to the left of the filename in the title bar of a Fred window
indicates that the contents of the window have been altered since the
window was last saved. (See Figure 1-1.)

The “Windows” menu also displays a small cross to the left of the name
of any window whose contents have been modified and not saved.

◆ Note: Fred stores files as text files, so they can be edited with other text
editors. However, if you use another editor on a Fred file containing
multiple fonts, the Fred font information will be corrupted.
Chapter 1: Editing in Macintosh Common Lisp 33

Multiple Panes

Fred windows can be split into multiple panes. Each pane can show a
different portion of the text file being edited in the window.

The scrollbars in a Fred window have “pane-splitters” next to them.
The pane splitter is a small black box. To create a new pane, click and
drag on one of the pane splitters. A single vertical line appears in the
window above the cursor. Drag it into the window while holding the
mouse button down. When the window roughly in half, release the
mouse button. The window now contains two individually scrollable
panes. You can also double-click on the pane-splitter to create two
panes of the same size.

When you have multiple-panes, the scroll-bar separating the panes will
be abutted by a control containing two black triangles. This control is
used to resize the panes. Click and drag the control to make the panes
the size that you want. If you make a pane so small that it would be
impractical to use it, the pane is removed. You can also remove a pane
by double-clicking on the pane resizing control.

Each of the panes in a Fred window is provides a different view into a
single file. To view more than one file using Fred, open each file into a
different Fred window.

■ Figure 1-2 A Fred window with multiple panes
34 Macintosh Common Lisp Reference

The minibuffer

Each Fred window contains a minibuffer for conveying current
information to the user. The minibuffer is at the bottom of the window,
to the left of the horizontal scroll bar. (See Figures 2-1 and 2-2.)
Information displayed in the minibuffer includes the package
information for the window. This is the name of the window’s package,
if the window has one, or the value of the variable *package*.

Other information displayed in the minibuffer depends on what
Macintosh Common Lisp is doing. Many system commands cause
information to appear in the minibuffer.

In addition, you can set the text of the minibuffer yourself, as described
in Chapter 14: Programming the Editor.

The minibuffer is actually a separate pane in the window, and so it can
be resized. The up-and-down control in the horizontal (bottom)
scrollbar allows you to reshape the window’s minibuffer, to have more
space to view messages there. This is particularly useful if you normally
have *arglist-on-space* set to true, since it allows you to view
long argument lists.

The kill ring and the Macintosh Clipboard

Macintosh Common Lisp supports both the standard Macintosh
Clipboard and an Emacs-style kill ring.

Only the traditional Macintosh commands Cut and Copy move text to
the Clipboard. Only the Macintosh command Paste moves text from the
Clipboard. The Clipboard contains only one edit at a time.

In contrast, the Fred kill ring is a circular list that stores and retrieves
multiple pieces of text. Fred’s kill-ring mechanism guarantees that
important text is not permanently lost through accidental deletion. It is
a far more powerful mechanism than the Clipboard.

Any command that deletes or copies text moves the text to the kill ring.
The Macintosh commands Cut, Copy, and Clear, as well as various
Fred commands, add text to the kill ring. In addition, any text deleted
by a side effect (that is, by typing or pasting when text in the window is
selected) is also moved to the kill ring. Successive deletions with no
intervening commands are concatenated into a single string in the kill
ring. Only white space and single characters deleted by a side effect are
not copied to the kill ring.
Chapter 1: Editing in Macintosh Common Lisp 35

The kill ring is stored as a circular list in the variable *killed-
strings*. You can retrieve any item from this list using the Fred
command keystrokes Control-Y and Meta-Y, described among the
Insertion commands in this chapter.

Fred commands that delete text do not place the text in the Clipboard,
and Fred text retrieval commands do not retrieve text from the
Clipboard. When you are cutting and pasting between Macintosh
Common Lisp and another Macintosh application, you should use the
Clipboard editing commands—Command-X, Command-C, and
Command-V—rather than the Fred commands.

Multiple fonts

Fred has a standard Macintosh multiple-font capability. Runs of
characters may be in different fonts, and the insertion font can be set
and changed.

Fred window fonts can be set programmatically, as described in
Chapter 14: Programming the Editor.They can also be set through
commands on the “Edit” menu.

Font information is retained during cut, copy, and paste operations.
You can disable this feature by setting the variable *paste-with-
styles* to nil.

◆ Note: If you use an editor other than Fred on a Fred file containing
multiple fonts, the Fred font information is corrupted.

Packages

Any Fred window can have an associated package. Expressions read
from the window are read in the window’s package. If the window
doesn’t have a package, then the value of the variable *package* is
used.

A new, empty Fred window has no associated package.

The package may be set in three ways: through a mode line at the start
of the text in the window, through an in-package statement, and
through the generic function set-window-package. These three
methods are not interchangeable. The circumstances under which each
method can be used are described in this section.
36 Macintosh Common Lisp Reference

Mode lines

To give a new, empty Fred window a package, you can add a prototype
mode line by giving the Fred command Control-Meta-M. Then edit it to
suit and use the Fred command Control-Meta-Shift-M to reparse the
mode line and set the window package.

If present, the mode line must be the first nonempty line in the
window’s contents. It begins with one or more semicolons, followed by
-*- (and often by Mode: LISP and a semicolon), followed by the
package declaration.

For example, the following mode line causes expressions in the window
to be read in the CCL package:
;-*- Mode: Lisp; Package: CCL -*-

Here are possible package specifications and the forms to which they
are equivalent.

■ Package: FOO is equivalent to (in-package "FOO").

■ Package: (FOO) is equivalent to (make-package "FOO").

■ Package: (FOO (bar baz)) is equivalent to (make-package
"FOO" :USE '("BAR" "BAZ"))).

■ Package: (FOO &rest x) is equivalent to (apply #'make-package
"FOO" x).

If the package specified in the mode line exists, the window’s package
is set to that package. If it does not, the minibuffer indicates a new
package:
(New package FOO)

The first time the package is needed to read an expression in the buffer,
the package is created from the mode line specification, and the
window’s package is set to the created package.

An in-package expression

If there is no mode line, Fred looks for an in-package form at the
beginning of the file. This form must be either the first form in the file
or the second form when the first form defines a package with
defpackage.

If there is an in-package form but the package does not exist, the
window’s package is set to nil and expressions read from the contents
of the window are read in the package that is the value of *package*.
If the package is being created with defpackage, you must make sure
that the value of *package* either is or uses the package "COMMON-
LISP".

Once the package exists, use the Fred command Control-Meta-Shift-M
to parse the mode line and set the window package.
Chapter 1: Editing in Macintosh Common Lisp 37

◆ Note: The search for the in-package form ignores the read-time
conditionals #+ and #-.

A set-window-package expression

If you don’t use either of the above methods, you can use the generic
function set-window-package. The method for Fred windows takes
two arguments, a Fred window and a package or a symbol that names
a package.

Finding a window’s package

You can find the package associated with a Fred window by calling the
generic function window-package, with the window as the argument,
or by looking in the minibuffer.

Fred parameters

The parameters in Table 1-1 can be used to control some of the behavior
of Fred.
38 Macintosh Common Lisp Reference

■ Table 1-1 Fred parameters

Variable Purpose

(continued)

arglist-on-space Displays in the minibuffer the argument list of a function
when a user types a space following an open parenthesis
and function name. (Does not parse; displays argument list
of any symbol name that follows an open parenthesis.)

Default is true; displays argument list for functions. If nil,
does not display.

clear-mini-buffer Specifies whether to clear the minibuffer after each Fred
command. If you operate with *arglist-on-space*
true, you may wish to set this to nil so that argument lists
persist long enough to use.

Default is true; text is cleared from minibuffer after any Fred
command is run. If nil, text is cleared from minibuffer only
when being replaced by other text.

control-key-mapping Allows the command or command-shift key to be used as a
Control key. This option is most useful for Macintosh
keyboards with no Control key, determines which key
combination specifies MCL Control key. The variable
should have one of the following values:

nil

give no special meaning to command or command-
shift.

:command-shift
command-shift maps to control and command is command.

:command
command maps to control and command-shift maps to
command.

Default is nil.

fred-default-font-spec Specifies which font is used when new Fred windows are
opened. The initial value is ("Monaco" 9 :PLAIN).

mini-buffer-font-spec Specifies the font used in minibuffers. The default value is
("Monaco" 9). Note that the size of minibuffers does not
increase even when a large point size is used. .
Chapter 1: Editing in Macintosh Common Lisp 39

■ Table 1-1 Fred parameters (continued)

Variable Purpose

Normalizing *next-screen-context-lines*

The next-screen-context-lines function is used to normalize
the Fred parameter *next-screen-context-lines* for a
particular screen height.

next-screen-context-lines This variable must be either an integer or a floating-point
number.

When it is an integer, it determines the number of context
lines to retain when Fred scrolls to the previous or next
screen. (Context lines are the lines from the previous screen
that are retained on the new screen.) This value is used by
various commands that scroll Fred windows. The default
value is 2.

When this variable is a floating-point number, it represents
the percentage of context lines to retain. The value must be
between 0.0 and 100.0.

paste-with-styles Affects all commands that cause text to be pasted into a
window.

Default is true; style information is retained when text is
copied and pasted. If nil, style information is discarded.

save-fred-window-positions Affects whether window size, position, and current
selection of Fred windows are retained when files are saved
and later reopened.

Default is true; information is retained. If nil, information is
discarded.

*save-position-on-window-

close*

Determines when the editor saves information about the
size, position, beginning line, cursor position, and selection
of the Fred window.

Default is nil; when *save-fred-window-positions*
is true, information is saved in the file’s resource fork when
the file is saved. If true, information is saved whenever the
window is closed.
40 Macintosh Common Lisp Reference

next-screen-context-lines [Function]

Syntax next-screen-context-lines screen-height

Description The next-screen-context-lines function returns the number of
lines of context to leave when scrolling a window.

Argument screen-height The window height in text lines.

Example

This function could be defined as follows.
? (defun next-screen-context-lines (screen-height)

 (let ((context *next-screen-context-lines*))

 (if (floatp context)

 (round (* context screen-height))

 (if (and (fixnump context)

 (< 0 context screen-height))

 context

 0))))

Editing in Macintosh style

Fred supports the standard set of Macintosh editing features and
conforms to Macintosh standards. The basic Macintosh editing
commands are available on the “Edit” menu, and their keyboard
equivalents are supported.

You can cut, copy, and paste text between different windows (including
the Listener) using Macintosh commands.

You can use almost any combination of MCL editing commands and
Macintosh commands. You do not have to worry about how you
combine them.
Chapter 1: Editing in Macintosh Common Lisp 41

Editing in Emacs style

Fred supports a full suite of keyboard commands for manipulating text.
Fred commands have been defined with care to conform to Emacs
conventions. The exceptions are primarily due to the Macintosh
standards and keyboard limitations.

The Control and Meta modifier keys

Emacs relies on two modifier keys to indicate command keystrokes. In
Emacs, these modifiers are called Control and Meta. In Macintosh
Common Lisp, various keystrokes may be used to invoke Control and
Meta sequences.

■ The Emacs Control modifier is accessible through the Macintosh
Control key or through the Command key (on Macintosh keyboards
that don’t have a Control key). In all MCL documentation, whichever
key you are using to indicate Control is referred to as the Control key.
See the description of the variable *control-key-mapping* in the
preceding table for instructions on using the Command key to indicate
control.

To issue a Control command, hold down the Control key while you
press the letter of the command. For example, to enter Control-X, hold
down the Control key and press X. To enter Control-X Control-S (the
Emacs Save command), hold down the Control key and press X, then
continue to hold down the Control key and press S. To enter Control-X
H (the Emacs Select Entire Buffer command), hold down the Control
key and press X, then release the Control key and press H.

■ The Emacs Meta modifier is accessed through the Macintosh Option
key.

To issue a Meta command, hold down the Meta key while you press the
letter of the command. For example, to enter Meta-X, hold down the
Meta key and press X. This differs from some other implementations of
Emacs, in which you press and release the Meta key before pressing the
command letter.

If you would prefer to use the Escape key as a Meta key, load the file
escape-key.lisp in the Examples folder. To issue a meta command,
press and release the escape key before you press the command letter.
The Option key remains a Meta key and works as it did before.

To insert a Macintosh Option character into Macintosh Common Lisp,
quote it: press Control-Q, then the character. For instance, you can
insert the bullet sign, normally the Option-8 keystroke, by pressing
Control-Q, then Option-8.
42 Macintosh Common Lisp Reference

Control-Q works only on the next character typed; if you want to type
a second Option character, press Control-Q again.

Disabling dead keys

The Macintosh keyboard supports dead keys. These are certain Option
keystrokes used to prefix other keystrokes. The initial keystroke does
not generate a character, but the second keystroke does. For example,
no character appears when you press Option-N on a Macintosh
English-language keyboard, but if you press A subsequently, you
generate the character ã.

The dead key mechanism can interfere with the use of the Option key
as the Meta key modifier. You can get around this in one of two ways:

■ You can install a second keyboard layout that does not support dead
keys. A number of freeware and shareware keyboard layouts are
available for this purpose. You can also make your own keyboard
layout by copying and editing the 'KCHR' resource. This resource type
is documented in Inside Macintosh.

If you install a keyboard layout that does not support dead keys, you
can insert a dead-key keystroke in Macintosh Common Lisp by quoting
it. For example, you can generate the character ã by pressing Control-
Q Control-N A.

■ You can use the Escape key as a Meta key, as described in the previous
section. If you do this regularly, load escape-key.lisp as part of
your init file.

Fred commands

The following Fred commands are defined in the initial MCL
environment. Files in the Examples folder include additional Fred
commands, and you can also write your own (as described in “Defining
Fred commands” on page 516). Many commands are case insensitive;
that is, you can press either Control-D or Control-Shift-D.

On the Apple Extended Keyboard, MCL editing uses the six named
keys—Help, Forward Delete, Home, End, Page Up, and Page Down—
in addition to the commands listed here.
Chapter 1: Editing in Macintosh Common Lisp 43

Macintosh Common Lisp also uses the mouse for editing, both in the
standard Macintosh way and in a few extended commands. For
example, Macintosh Common Lisp recognizes up to a quadruple
mouse click; it also recognizes mouse clicks in combination with
Control and Meta keys. These commands are documented below.

The term current expression, used in the following documentation,
denotes the text currently selected, if any. If no text is selected and the
insertion point is next to a parenthesis, the current expression is
between that parenthesis and the matching parenthesis—for example,
between a close parenthesis and the matching open parenthesis, or
between an open parenthesis and the matching close parenthesis. If no
text is selected and the insertion point is inside a symbol, the symbol is
the current expression. In other cases, there is no current expression.
44 Macintosh Common Lisp Reference

Help, documentation, and inspection functions

The keystrokes and functions in Table 1-2 give information about
Macintosh Common Lisp and its components.

■ Table 1-2 Fred commands for help, documentation, and inspection

Keystroke Function invokedPurpose

(continued)

Control-? ed-help Brings up the Fred Commands window. This
window contains a list of all Fred keyboard
commands available in the global command
table. The list is regenerated each time the
window is created. The Fred Commands
window may be searched, saved, and printed.

Control-= ed-what-cursor-

position

Prints information about the current editor
window to *standard-output*.

Meta-period ed-edit-definition Attempts to bring up the source code definition
for the symbol surrounding the insertion point.
If the symbol is defined from more than one
source file, the user is given a choice of
definitions. If the symbol is defined as a slot in
a defclass, Meta-period finds the approximate
location of the symbol. Search backward with
Control-R to find the location at which the
symbol is defined.

This function works for most forms that are
defined with *record-source-file* set to
t.
Chapter 1: Editing in Macintosh Common Lisp 45

■ Table 1-2 Fred commands for help, documentation, and inspection (continued)

Keystroke Function invoked Purpose

Movement

During editing, use the functions and keystrokes in Table 1-3 to move the
insertion point. Most of these movement commands can be modified by
the Shift key to establish or extend a selection; see Table 1-4.

Command-Meta-click edit-definition Attempts to bring up the source code definition
for the symbol on which the mouse clicks;
works like ed-edit-definition.

Control-X
Control-A

ed-arglist Prints the argument list of the function bound
to the symbol surrounding the insertion point.
Argument list is displayed in the minibuffer if
the value of *mini-buffer-help-output*
is t; otherwise, it is displayed in the
standard-output stream. The ed-
arglist function works for built-in functions
and macros, and for most functions and macros
defined with *save-local-symbols* or
fasl-save-local-symbols set to t.

Control-X
Control-D

ed-get-documentation Opens a dialog box displaying the symbol
surrounding the insertion point and the
documentation string of the function bound to
that symbol. If no documentation string is
available, displays “No documentation
available.” This function works for built-in
functions and macros and for most forms
defined with *save-doc-strings* set to
true.

Control-X
Control-I

ed-inspect-current-

sexp

Inspects the current symbolic expression.
46 Macintosh Common Lisp Reference

■ Table 1-3 Fred commands for movement

Keystroke Function invoked Purpose

(continued)

Control-B, ← ed-backward-char Moves the insertion point back one character..

Control-F, → ed-forward-char Moves the insertion point forward one
character.

Meta-B,
Meta-←

ed-backward-word Moves the insertion point back one word.

Meta-F,
Meta-→

ed-forward-word Moves the insertion point forward one word.

Control-Meta-B,
Control-←

ed-backward-sexp Moves the insertion point back one s-
expression.

Control-Meta-F,
Control-→

ed-forward-sexp Moves the insertion point forward one s-
expression.

Control-A ed-beginning-of-line Moves the insertion point to the beginning of
the line.

Control-E ed-end-of-line Moves the insertion point to the end of the line.

Control-Meta-A ed-start-top-level-

sexp

Moves the insertion point to the beginning of
the current top-level s-expression. Top-level
expressions are signaled by an open
parenthesis flush with the left margin.

Control-Meta-E ed-end-top-level-

sexp

Moves the insertion point to the end of the
current top-level s-expression. Top-level
expressions are recognized by having an open
parenthesis flush with the left margin.

Control-P ed-previous-line Moves the insertion point up one line.

Control-N ed-next-line Moves the insertion point down one line.

Meta-V ed-previous-screen Scrolls upward through the text by a
windowful and moves the insertion point to the
upper-left corner of the window. The number
of lines to be retained from the previous screen
after scrolling is determined by *next-
screen-context-lines*.
Chapter 1: Editing in Macintosh Common Lisp 47

■ Table 1-3 Fred commands for movement (continued)

Keystroke Function invokedPurpose

Control-V ed-next-screen Scrolls downward through the text by a
windowful and moves the insertion point to the
upper-left corner of the window. The number
of lines to be retained is determined by *next-
screen-context-lines*.

Meta-< ed-beginning-of-

buffer

Moves the insertion point to the beginning of
the buffer.

Meta-> ed-end-of-buffer Moves the insertion point to the end of the
buffer.

Meta-) ed-move-over-close-

and-reindent

Moves the insertion point over the next close
parenthesis and into position for typing the
next Lisp expression.

Control-Tab ed-indent-

differently

Reindents the line containing the insertion
point to an alternate indentation.

Control-Meta-) ed-fwd-up-list Moves the insertion point past the end of the
current s-expression. Used again, it moves the
insertion point up one level of the expression,
that is, past the close parenthesis at the next
higher level of the expression.;

Control-Meta-(ed-bwd-up-list Moves the insertion point to before the
beginning of the current s-expression. Used
again, it moves the insertion point up one level
of the expression, that is, to before the open
parenthesis at the next higher level of the
expression.;

Control-Meta-N,
Control-Meta-↓

ed-next-list Moves the insertion point in window past the
end parenthesis of the next s-expression at the
same level.;

Control-Meta-P,
Control-Meta-↑

ed-previous-list Moves the insertion point to before the opening
parenthesis of the previous s-expression at the
same level.;

Meta-M ed-back-to-

indentation

Moves the insertion point to the first non-
white-space character in its current line.
48 Macintosh Common Lisp Reference

Selection

The keystrokes in Table 1-4 are used to select text. You can modify most
motion commands with the Shift key to select the region between the
original insertion point and the new insertion point.

In addition, you can use the mouse to select text, either through
multiple-clicks, or by clicking and dragging.

■ Two clicks selects a word or parenthesized expression.

■ Three clicks selects a line.

■ Four clicks selects the entire window contents.

■ Table 1-4 Fred commands for selection

Keystroke Function invoked Purpose

(continued)

Shift-← ed-backward-select-

char

Selects one character backward from the
insertion point and moves the insertion point to
the left of that character.

Shift-→ ed-forward-select-

char

Selects one character forward from the
insertion point and moves the insertion point to
the right of that character.

Meta-Shift-← ed-backward-select-

word

Selects one word backward from the insertion
point and moves the insertion point to the left
of that word. If the insertion point is in the
middle of a word, selects the word.

Meta-Shift-→ ed-forward-select-

word

Selects one word forward from the insertion
point and moves the insertion point to the right
of that word. If the insertion point is in the
middle of a word, selects the word.

Control-Shift-← ed-backward-select-

sexp

Selects one symbolic expression backward from
the insertion point and moves the insertion
point to the left of that symbolic expression. If
the insertion point is in the middle of a word,
selects to the beginning of the word.
Chapter 1: Editing in Macintosh Common Lisp 49

■ Table 1-4 Fred commands for selection (continued)

Keystroke Function invokedPurpose

(continued)

Control-Shift-→ ed-forward-select-

sexp

Selects one symbolic expression forward from
the insertion point and moves the insertion
point to the right of that symbolic expression. If
the insertion point is in the middle of a word,
selects to the end of the word.

Control-Shift-A ed-select-beginning-

of-line

Selects to the beginning of the line and moves
the insertion point to the beginning of the
selection.

Control-Shift-E ed-select-end-of-

line

Selects to the end of the line and moves the
insertion point to the end of the selection.

Control-Meta-H ed-select-top-level-

sexp

Selects the current top-level s-expression. Top-
level expressions are signaled by an open
parenthesis flush with the left margin.

Control–Meta–Space
bar

ed-select-current-

sexp

Selects the current s-expression.

Control-X H select-all Selects the entire buffer and scrolls to the
beginning of the buffer.

Shift-↑ ,
Control-Shift-P

ed-select-previous-

line

Selects to the same point of the previous line
and moves the insertion point to before the
beginning of the selection. If it is not possible to
move the insertion point to the same column in
the previous line, it moves the insertion point to
the end of the previous line.

Shift-↓ ,
Control-Shift-N

ed-select-next-line Selects to the same point of the next line and
moves the insertion point past the end of the
selection. If it is not possible to move the
insertion point to the same column in the next
line, Macintosh Common Lisp moves the
insertion point to the end of the next line.
50 Macintosh Common Lisp Reference

■ Table 1-4 Fred commands for selection (continued)

Keystroke Function invokedPurpose

Shift–Page Up,

Meta-Shift-V

ed-select-previous-

screen

Selects from the insertion point to the
corresponding line and column in the previous
screen, or, if this is not possible, to the end of the
corresponding line on the previous screen. It
moves the insertion point to before the
beginning of the selection.

Shift–Page Down,
Control-Shift-V

ed-select-next-

screen

Selects from the insertion point to the
corresponding line and column in the next
screen, or, if this is not possible, to the end of the
corresponding line on the next screen. It moves
the insertion point past the end of the selection.

Control-Meta-Shift-P,
Control-Meta-Shift-↑

ed-select-previous-

list

Selects to the beginning of the previous list at
the same level and moves the insertion point to
before the open parenthesis of that list.

Control-Meta-Shift-N,
Control-Meta-Shift-↓

ed-select-next-list Selects to the end of the next list at the same
level and moves the insertion point past the
close parenthesis of that list.

Control-X Control-X ed-exchange-point-

and-mark

Exchanges the positions of the insertion point
and the top mark. With an argument, the range
between the two is selected. For example,
Control-X Control-X exchanges the position of
the point and the mark; Control-1 Control-X
Control-X exchanges them and selects the
range between.
Chapter 1: Editing in Macintosh Common Lisp 51

Insertion

The keystrokes in Table 1-5 are used to insert text and space.

■ Table 1-5 Fred commands for insertion

Keystroke Function invoked Purpose

(continued)

Control-O ed-open-line Inserts a new line without moving the insertion
point.

Control-Meta-O ed-split-line Splits the line in which the insertion point is
located, indenting so that the column in which
the characters are located does not change.

Tab ed-indent-for-lisp Reindents the current line. (To insert a tab,
press Control-Q followed by Tab.) If there is a
selection, the entire selection is reindented.

Control-Meta-Q ed-indent-sexp Reindents the current expression.

Control-Return ed-newline-and-

indent

Inserts Return followed by Tab.

Control-Y ed-yank Inserts (yanks) the current kill ring string into
the buffer at the insertion point. If text is
selected, it is replaced with the inserted text.
This command keystroke is often used after Cut
or Copy (Control-W or Meta-W).

Meta-Y ed-yank-pop Performs a “rotating yank.” When Meta-Y is
first pressed, the first item in the kill ring is
inserted (yanked). If pressed immediately
again, Meta-Y removes the old insertion,
rotates the kill ring, and inserts the next item in
the kill ring. Repeatedly pressing Meta-Y
shows each item in the kill ring (you rotate
through the kill ring and eventually return to
the beginning). The kill ring remains rotated
until you perform another kill.
52 Macintosh Common Lisp Reference

■ Table 1-5 Fred commands for insertion (continued)

Keystroke Function invoked Purpose

(continued)

Control-Q Inserts the next keystroke quoted, allowing
access to the Macintosh optional character set
and other special characters. That is, for a single
keystroke following the pressing of Control-Q,
the Option key is not interpreted as a Meta
keystroke. For example, you insert the bullet
sign (normally the Option-8 keystroke) by
pressing the Control-Q and Meta-8. Pressing
only Meta-8 would cause Fred to look for a
command. Control-Q can also be used to insert
control characters such as tabs into buffers.

Meta-" ed-insert-double-

quotes

Inserts the characters " " and puts the insertion
point between them.

Meta-# ed-insert-sharp-

comment

Inserts the characters #||# and puts the
insertion point between the vertical bars.

Meta-(ed-insert-parens Inserts a set of parentheses and puts the
insertion point between them.

Meta-U ed-upcase-word Converts the rest of the current word or each
word in a selection to uppercase. For example,
if the insertion point is between the y and the u
of the word giddyup, pressing Meta-U
produces giddyUP. Repeatedly typing Meta-U
converts successive words to uppercase. Note
that Option-U is a dead key on English-
language keyboards; see “Disabling dead keys”
on page 43.

Meta-L ed-downcase-word Converts the rest of the current word or each
word in a selection to lowercase. For example,
if the insertion point is between the E and the M
of the word EMACS, pressing Meta-L produces
Emacs. Repeatedly typing Meta-L converts
successive words to lowercase.
Chapter 1: Editing in Macintosh Common Lisp 53

■ Table 1-5 Fred commands for insertion (continued)

Keystroke Function invoked Purpose Deletion

Meta-C ed-capitalize-word Capitalizes the first letter of the rest of the
current word or the first letter of each word in a
selection. For example, if the insertion point is
between the first and second c of the word
Hiccup, typing Meta-C produces HicCup.
Repeatedly typing Meta-C capitalizes
successive words.

Control-T ed-transpose-chars Transposes the two characters surrounding the
insertion point unless the insertion point is at
the end of a line, in which case it transposes the
two characters to the left of the insertion point.
If there is a selection, the first character in the
selection is transposed with the character
before the selection.

Meta-T ed-transpose-words Transposes the two words surrounding the
insertion point.

Control-Meta-T ed-transpose-sexps Transposes the two symbolic expressions
surrounding the insertion point.

Control–Space bar ed-push/pop-mark-

ring

Pushes the position of a mark onto the mark
ring. With an argument n, it moves to the nth
mark position in the mark ring. If the mark ring
is empty, the function signals an error.

Control-X Control-X ed-exchange-point-

and-mark

Exchanges the positions of the insertion point
and the top mark. With an argument, the range
between the two is selected. For example,
Control-X Control-X exchanges the position of
the point and the mark; Control-1 Control-X
Control-X exchanges them and selects the
range between.
54 Macintosh Common Lisp Reference

Deletion

The keystrokes and functions in Table 1-6 are used to delete text and
spaces.

◆ Note: The key in Delete, Meta-Delete, and Control-Meta-Delete is the
Delete key, not the Forward Delete key on the Apple Extended
Keyboard.

■ Table 1-6 Fred commands for deletion

Keystroke Function invoked Purpose

(continued)

Delete ed-rubout-char Deletes the character to the left of the insertion
point.

Meta-Delete ed-rubout-word Deletes the word to the left of the insertion
point. If the insertion point is inside a word,
only the portion of the word to the left of the
insertion point is deleted.

Control-Meta-Delete ed-kill-backward-

sexp

Deletes the expression to the left of the insertion
point.

Control-D,
Forward Delete
(extended keyboard)

ed-delete-char Deletes the character to the right of the insertion
point. (This is the Forward Delete key on the
Apple Extended Keyboard, not the Delete key
over the Return key.)

Meta-D ed-delete-word Deletes the word to the right of the insertion
point. If the insertion point is inside a word,
only the portion of the word to the right of the
insertion point is deleted.

Control-K ed-kill-line Deletes the remainder of the line containing the
insertion point, adding it to the kill ring. If the
insertion point is at the end of a line, the
following carriage return is deleted.

Control-Meta-K ed-kill-forward-sexp Deletes the expression to the right of the
insertion point, adding it to the kill ring.
Chapter 1: Editing in Macintosh Common Lisp 55

■ Table 1-6 Fred commands for deletion (continued)

Keystroke Function invoked Purpose

Control-W ed-kill-region Deletes the current selection, adding it to the
kill ring.

Meta-W ed-copy-region-as-

kill

Adds the current selection (or current
expression) to the kill ring without deleting it
from the buffer.

Control-X
Control–Space bar

ed-delete-forward-

whitespace

Deletes all white-space from the insertion point
to the next non-white-space character.

Meta–Space bar ed-delete-whitespace Replaces all spaces and tabs surrounding the
insertion point by a single space.

Meta-\ ed-delete-

horizontal-

whitespace

Deletes all white space characters to the left and
right of the insertion point.

Control-Meta-; ed-kill-comment Kills only the comment in the line containing
the insertion point. The insertion point may be
located anywhere in the line.
56 Macintosh Common Lisp Reference

Lisp operations

The functions and keystrokes in Table 1-7 perform Lisp operations on
the current expression.

■ Table 1-7 Fred commands for Lisp operations

Keystroke Function invoked Purpose

(continued)

Enter ed-eval-or-compile-

current-sexp

Executes or compiles the current expression.
This key is not the Return key (which inserts a
carriage return and may cause an execution in
the Listener) but the key marked Enter in the
numeric keypad.

Control-X Control-C ed-eval-or-compile-

top-level-sexp

Executes or compiles the current selection or
the current top-level Lisp expression,
whichever is appropriate. The current top-level
Lisp expression is determined heuristically by
searching backward for an open parenthesis at
the start of a line.

Control-X Control-E ed-eval-current-sexp Executes the current expression.

Control-M ed-macroexpand-1-

current-sexp

Macroexpands the current expression with
macroexpand—1, repeatedly if necessary, until
the expression is no longer a macro. The result
of each call to macroexpand-1 is printed in
the Listener.

Control-X Control-M ed-macroexpand-

current-sexp

Macroexpands the current expression and
pretty-prints the result into the Listener. The
expansion is done as if by a call to
macroexpand.

Control-Meta-Shift-M add-modeline Adds a mode line.

Control-X Control-R ed-read-current-sexp Reads the current expression and pretty-prints
the result into the Listener. This command is
useful for checking read-time bugs, especially
for those expressions containing backquotes.
Chapter 1: Editing in Macintosh Common Lisp 57

■ Table 1-7 Fred commands for Lisp operations (continued)

Keystroke Function invoked Purpose

Meta-; ed-indent-comment Inserts or aligns comments. If the line that
contains the insertion point of window or item
starts with one or more semicolons (which
indicate comments in Lisp), aligns the line with
the comment column (by default, column 40).

If there is no comment on the line containing
the insertion point, the function inserts a
semicolon at the comment column, followed by
a space, and moves the insertion point to the
comment column +2.

Control-X ; ed-set-comment-

column

Sets the comment column to that of the current
insertion point.

Control-Meta-; ed-kill-comment Kills only the comment in the line containing
the insertion point. The insertion point may be
located anywhere in the line.
58 Macintosh Common Lisp Reference

Window and file operations

The functions and keystrokes in Table 1-8 are used to save and select
text manipulated in windows.

■ Table 1-8 Fred commands for window and file operations

Keystroke Function invoked Purpose

Control-X Control-S window-save Saves the contents of the active Fred window to
its associated disk file. If no file is associated
with the window, the user is requested to
supply a filename.

Control-X Control-W window-save-as Saves the contents of the active Fred window to
a file specified by the user.

Control-X Control-V edit-select-file Allows the user to select a text file and opens a
Fred window for editing that file. .

Control-Meta-L ed-last-buffer Switches the positions of the first and second
windows on the list of windows, so that the
second window becomes the active window.
Called again, it toggles their positions again. (It
switches away from Apropos, Inspector
Central, Search Files, and String Search, but not
back.)
Chapter 1: Editing in Macintosh Common Lisp 59

Undo commands

The Undo command undoes the effect of previous commands.
Functions and keystrokes associated with Undo are listed in Table 1-9.
Successive insertions or deletions, or multiple replacements via the
Search dialog, are considered a single command.

Each window has its own Undo history list.

■ Table 1-9 Fred commands for undoing commands

Keystroke Function invoked Purpose

Control-_ ed-history-undo Undoes a previous Fred command.

Control-Meta-_ ed-print-history Displays the Undo history list in the Listener.
60 Macintosh Common Lisp Reference

Numeric arguments

The keystrokes in Table 1-10 multiply the effect of any command to
which they can be applied. (They can always be applied to motion and
selection commands.)

■ Table 1-10 Fred commands for giving numeric arguments

Keystroke Function invoked Purpose

Incremental searching in Fred

Fred supports an Emacs-style incremental search. The incremental
search is invoked through the keystrokes Control-S (incremental search
forward) and Control-R (incremental search reverse).

The mechanism of incremental search is fairly complicated. However,
this complexity is necessary to make the incremental search easy to
perform (as well as powerful). If you have trouble following this
description, experiment with incremental searching. You should get the
hang of it easily.

Control-U n ed-universal-

argument

The universal argument multiplies any Fred
keystroke command n number of times. The
argument n is optional. If a keystroke command
is entered instead of a number, n is taken to be
4. For example, to move down four lines, you
give the command Control-U Control-N. To
move down three lines, you give the command
Control-U 3 Control-N. (Entering a very large
number may result in an error.)

Control-n, Meta-n,
Control-Meta-n

ed-numeric-argument Turns a digit n into a numeric argument for the
subsequent command. For example, pressing
Meta-5 Control-N moves the insertion point
down five lines; pressing Meta-1 Meta-2
Control-N moves it down twelve lines.
(Entering a very large number may result in an
error.)
Chapter 1: Editing in Macintosh Common Lisp 61

Performing an incremental search

When you first press Control-S in a Fred window, Fred displays the
prompt i-search in the window’s minibuffer (or i-search
reverse for Control-R). At this point, you can start typing the
characters in your search string.

If you type f, Fred immediately searches for the next occurrence of f
after the insertion point and selects it, scrolling through the text if
necessary to make it visible.

If you then type o, Fred starts with the currently selected f and searches
for fo. You can continue typing characters to add to the search string.
With each addition, Fred immediately searches for the next occurrence
of the string and selects the found text. The next occurrence may be a
simple extension of the previously found text, or it may occur later in
the buffer.

Making additional searches

Suppose you type foo and Fred finds the string in the buffer, but it is
not the right one. You want a later occurrence of foo. Press Control-S a
second time to search for the next occurrence of foo. You can continue
pressing Control-S to search for subsequent occurrences of the string.

When a search fails, you hear a beep, and the i-search prompt
changes to Failing i-search. A search may fail because there are
no more occurrences of the string or because you add a character to the
search string and that new string cannot be found in the buffer. In either
case, pressing Control-S again at this point causes the search to begin
again at the beginning of the buffer.

The behavior of Control-R is identical to that of Control-S except that
the search proceeds backward from the insertion point to the
beginning. When no further occurrences are found and you press
Control-R again, the search begins anew from the end of the buffer.

Backing up with the Delete key

Sometimes you may want to change the search string. For example, you
may mistakenly type foot instead of fool. Pressing the Delete key has
the effect of undoing the last keystroke in the search string. This deletes
the last character of the search string and, if necessary, resumes the
search at the buffer location where the insertion point was when you
typed the last character of the search string. Pressing Delete several
times removes additional characters from the search string and “moves
back” the search further.
62 Macintosh Common Lisp Reference

You can use the Delete key to undo the effects of Control-S and Control-
R in addition to the effects of adding characters to the search string. For
example, suppose you type foo and then press Control-S twice. At this
point, the insertion point will be located at the third occurrence of foo
in the window (assuming there are three occurrences of foo). If you
then press Delete, Fred reverses the effects of the last keystroke
(Control-S), returning to the second occurrence of foo. Pressing Delete
again undoes the first Control-S, and the insertion point moves to the
first occurrence. Pressing Delete yet again undoes the letter o, and Fred
shows you the first occurrence of fo in the window.

If the last keystroke added a block of characters to the search string,
pressing Delete removes the entire block. (See Control-Q, Control-W,
and Control-Y in “Special incremental search keystrokes” on page 64.)

Terminating an incremental search

There are a number of ways to terminate an incremental search:

■ Clicking the mouse button performs the indicated action and
terminates the incremental search.

■ Pressing Escape terminates the incremental search, moving the
insertion point to the end of the selection (on incremental search) or
beginning of the selection (on incremental search reverse).

■ Pressing Control-G terminates the search if there were no unfound
characters and returns the insertion point to its location before the
search began. If there were some unfound characters, these are deleted
from the search string, and the search can continue.

■ Choosing a Fred command causes the command to be executed and
terminates the search.

■ Choosing a menu command causes the command to be executed and
terminates the search.

Doing another incremental search

Fred keeps track of the last string used in an incremental search. When
you do another incremental search, this string appears in the minibuffer
as the default search string. This feature makes it easy to search several
windows for the same string.

When the default string appears, immediately press Control-S or
Control-R to search for the string. If you type anything else before
typing Control-S or Control-R, Fred deletes the default string and starts
a search for the new string.
Chapter 1: Editing in Macintosh Common Lisp 63

Special incremental search keystrokes

These keystrokes in Table 1-11 have special meanings in the context of
an incremental search.

■ Table 1-11 Fred commands for searching

Keystroke Function invoked Purpose

Control-S ed-i-search-forward Initiates a forward incremental search..

Control-R ed-i-search-reverse Initiates a reverse incremental search.

Delete Deletes the last character typed and backs up
the search.

Control-G During a search that has found nothing, deletes
all unfound characters from the search string.
The search can then continue. During a
successful search, ends the incremental search
and returns the insertion point to its original
position.

Control-Q Gets a character and inserts it quoted into the
search string. This is used to search for special
characters, such as Control-S, Return, or Tab.

Control-W Copies the word or selection following the
insertion point into the search string.

Control-Y Copies the line following the insertion point
into the search string.

Control-S
Control-Y

Appends the selection or rest of line to the
search string.

Control-S
Control-W

Appends the string from the insertion point to
the end of the current word to the search string.

Control-S
Control-Meta-W

Appends the string from the insertion point to
the end of the current s-expression to the search
string.

Control-S
Meta-W

Ends the search.
64 Macintosh Common Lisp Reference

The Fred Commands tool

The Fred Commands tool is accessed through the “Fred Commands”
command on the “Tools” menu. It lists all the Fred commands bound to
keys. (These commands are those in the command table stored in the
parameter *comtab*).

The following figure shows the Fred Commands dialog box. The
Contains text edit field specifies a string contained by commands in the
scrolling-list. The Keystroke buttons and Key box are live controls that
specify a key sequence to show in the list.

The Keystroke button specifies a keystroke when you press the button
with your mouse or press a corresponding key on your keyboard. To
enter a character in the Key box, you must first click in the box, then
type a character from your keyboard.

■ Figure 1-3 The Fred Commands dialog box
Chapter 1: Editing in Macintosh Common Lisp 65

The Listener Commands tool

The editing commands available in the Listener are slightly different
from those available in other Fred windows. The Listener Commands
tool, accessed through the “Tools” menu, lists these differences. (The
commands it shows are those stored in *listener-comtab*).

The operation of this tool is the same as that of the Fred Commands
tool.

■ Figure 1-4 The Listener Commands dialog box

The List Definitions tool

The List Definitions tool is accessed through the “List Definitions”
command on the “Tools” menu. It displays a modeless dialog box (see
the following figure), that lists all the definitions in the top editor
window. Double-clicking on a selection or pressing the Go To
Definition button, scrolls the window to that definition. The Contains
text edit field in the dialog box acts as a filter for selecting only those
definitions containing a particular string.
66 Macintosh Common Lisp Reference

This tool sorts definitions in the order that they appear in the buffer or
alphabetically, depending on the setting of the Sort buttons. The
buttons at the bottom of the dialog box rescan the buffer and find the
highlighted definition.

When the active window is not an editor window, this command is
dimmed.

■ Figure 1-5 The List Definitions dialog box

The Search Files tool

The Search Files tool is accessed through the “Search Files” command
on the “Tools” menu. It searches a set of files for a given string. This tool
displays the dialog box shown in the following figure. The In Pathname
text edit field specifies the set of files for the search. The Search For text
edit field specifies a string to locate in the files.
Chapter 1: Editing in Macintosh Common Lisp 67

■ Figure 1-6 The Search Files dialog box

If the Search Files tool finds a file containing the specified string, the
tool displays the dialog box in the following figure. If you press the
Find It button in that dialog box, this tool opens the file in a Fred
window.

■ Figure 1-7 Dialog box after a successful search

This tool accepts wildcard characters in the pathname specification.
Macintosh Common Lisp supports Common Lisp extended wildcards,
which are documented in Steele, pages 623–627, and has a wildcard
specification system described in “Wildcards” on page 298 .

The Search Files tool spawns a process, so it is possible to have multiple
searches running at the same time. Because it uses Boyer-Moore search
the Boyer-Moore search algorithm, it is quite fast.
68 Macintosh Common Lisp Reference

69

Chapter 2:

Points and Fonts

Contents

Points / 70
How Macintosh Common Lisp encodes points / 70

MCL functions relating to points / 71
Fonts / 74

Implementation of font specifications / 74
Implementation of font codes / 75
Functions related to font specifications / 76
Functions related to font codes / 80

System data / 87

This chapter describes the MCL implementation of points and fonts. Points are
used for drawing into views; font specifications and font codes describe fonts.

Some allied MCL functions give useful data about your Macintosh system.
They are also described in this chapter.

You should read this if you are not already familiar with the MCL and
Macintosh implementations of these concepts.

Points

Points are used throughout Macintosh Common Lisp to represent two-
dimensional data. The most common use of points is in graphics
operations that require you to specify a width and a height (for
example, specifying the size of a window) or horizontal and vertical
coordinates (for instance, specifying the position of an item in a dialog
box).

How Macintosh Common Lisp encodes points

Points are graphics coordinates with an x component and a y
component. To save space, Macintosh Common Lisp encodes the x and
y components of a point into a single integer, known as the “encoded
form.” The low-order 16 bits hold the x coordinate and the high-order
16 bits hold the y coordinate. Both dimensions are signed.

Many Lisp functions that take a point as an argument can accept it as
two coordinates (h and v) or as a single integer holding both
coordinates. If a function takes more than one point, or has optional
arguments, the points must all be passed in encoded form.

Points are always returned as a single encoded integer.

The reader macro #@ converts the subsequent list of two integers into a
point. This can be used for clarity in source code. For example, #@(30
-100) expands into -6553570, an integer that represents the point
with a horizontal coordinate of 30 and a vertical coordinate of –100.

The integer that encodes the x and y coordinates of a point is
automatically converted to a bignum if a fixnum cannot accommodate
it. (For definitions of bignum and fixnum, see Common Lisp: The
Language.)

Except in cases where efficiency is paramount and the range is
guaranteed to be below 4096, you should always assume that graphics
points may be bignums. Because of this, eq can’t safely be used to
compare points; you must use eql as follows:
? (eq #@(1800 7496) #@(1800 7496))

NIL

? (eql #@(1800 7496) #@(1800 7496))

T

70 Macintosh Common Lisp Reference

MCL functions relating to points

The following functions relate to points.

point-string [Function]

Syntax point-string point

Description The point-string function returns a string representation of point.

Argument point A point.

Example
? (point-string 4194336)
"#@(32 64)"

? (view-position (front-window))

14417924

? (point-string (view-position (front-window)))

"#@(4 220)"

point-h [Function]

Syntax point-h point

Description The point-h function returns the horizontal coordinate of point.

Argument point A point.

Example
? (point-h 4194336)
32

point-v [Function]

Syntax point-v point

Description The point-v function returns the vertical coordinate of point.

Argument point A point.

Example
Chapter 2: Points and Fonts 71

? (point-v 4194336)
64

point<= [Function]

Syntax point<= point &rest other-points

Description The point<= function checks to see whether point and other-points are
ordered by nondecreasing size in both coordinates. If they are, or if there
is only one point, the function returns t; otherwise, it returns nil.

Arguments point A point, expressed as an integer.
other-points Zero or more other points, expressed as fixnums.

make-point [Function]

Syntax make-point h &optional v

Description The make-point function returns a point constructed from horizontal
and vertical coordinates h and v.

Arguments h The horizontal coordinate of the point, or the complete
point (encoded as an integer) if v is nil or not supplied.

v The vertical coordinate of the point. If v is nil (the
default), h is assumed to be an entire point in encoded
form and is returned unchanged.

Examples
? (make-point 32 64)

4194336

? (make-point 32 nil)

32

? (make-point 32)

32

You can pass make-point the two coordinates of a point, or you can
pass it a point as a single argument. In either case, it returns a point.
This makes make-point very useful in processing optional argument
sets.
72 Macintosh Common Lisp Reference

? (make-point 40 50)
3276840
? (make-point 3276840)
3276840
? (point-string 3276840)
"#@(40 50) "
? (defun show-point

 (h &optional v)
 (point-string (make-point h v)))
show-point
? (show-point 32 32)
"#@(32 32)"
? (show-point 3276840)
"#@(40 50)"

add-points [Function]

Syntax add-points point1 point2

Description The add-points function returns a point that is the result of adding
point-1 and point-2.

Points cannot be added with the standard addition function because of
possible overflow between the x and y components of the encoded form.

Arguments point-1 A point.
point-2 A point.

Example
? (point-string (add-points #@(10 10) #@(50 100)))
"#@(60 110)"

subtract-points [Function]

Syntax subtract-points point1 point2

Description The subtract-points function returns a point that is the result of
subtracting point-2 from point-1.

Points cannot be subtracted with the standard subtraction function because of
possible overflow between the x and y components of the encoded form.

Arguments point-1 A point.
point-2 A point.

Example
Chapter 2: Points and Fonts 73

? (point-string (subtract-points #@(10 10)
 #@(3 4)))
"#@(7 6)"

Fonts

There are two ways of representing fonts in Macintosh Common Lisp,
font specifications and font codes.

A font specification (font spec) is an atom or list of atoms specifying one
or more of the following: the font name, font size, font styles, font color
and transfer mode. They are more humanly readable than font codes.
They can be translated into font codes through the function font-
codes.

Font codes represent font information in a way that accesses the
Macintosh Font Manager directly. Since they don’t need to be
interpreted, they are significantly faster than font specifications. They
can be translated into font specifications explicitly through the function
font-spec.

The manner in which font information is encoded in font-codes is
described fully in Inside Macintosh.

Implementation of font specifications

The font name should be a string. It should correspond to a font
available in the System file. You can find out which fonts are available
by examining the *font-list* variable, described in the section
“System data” on page 87. Font names are not case sensitive.

The font size should be an integer, which is always in the range from 1
to 127. Because of an idiosyncrasy in the Macintosh Operating System,
a point size of 0 may appear to be the same value as a point size of 12.

The font style should be one or more of the following style keywords.
Multiple font styles are allowed. A :plain font style implies the
absence of other font styles.

:plain :bold :condense :extend
:italic :outline :shadow :underline
74 Macintosh Common Lisp Reference

The transfer mode should be one of the following transfer-mode
keywords. These transfer modes are described in Appendix D:
QuickDraw Graphics.

:srcCopy :srcOr :srcXor :srcBic
:srcPatCopy :srcPatOr :srcPatXor :srcPatBic

A font specification can have one of 256 colors. The colors are
represented by their index into the operating system’s 8-bit color table,
with the exception that color index 0 indicates the default foreground
color. The color in a font spec should be a list of the form (:color x)
or (:color-index y), where x is a 24-bit MCL color as returned by
make-color and y is an integer between 0 and 255 inclusive.

An error is signaled if more than one name, size, color, or transfer mode
is given in a single font specification.

The following are examples of legal font specifications:
"New York"
"nEw YOrk"
("Monaco" 9)
("Monaco" :extend :shadow 57 :srcPatCopy)
:srcCopy
:outline
(12 :srcCopy)

("Monaco" 12 :bold (:color #.*red-color*))

("Chicago" 9 (:color-index 5))

Implementation of font codes

Font codes are the four numbers used by the Macintosh computer to
represent fonts. These numbers are stored in GrafPort, CGrafPort, and
TERec records.
(defrecord grafport

 ...

 (txFont integer)

 (txFace unsigned-byte)

 (txMode integer)

 (txSize integer)

 ...)

Macintosh Common Lisp encodes these 64 bits of information as two
fixnums, the font-face code (ff) and the mode-size code (ms). (The field
txFace is only 8 bits, but an alignment byte follows it in the record.)
Chapter 2: Points and Fonts 75

The font-face layout looks like this:

 | txFont | txFace | unused |

 31 16 15 8 7 0

The mode-size layout looks like this:

 | txMode | txSize |

 31 16 15 0

Note that since MCL fixnums use only 29 bits, you get only 13 bits of the
16-bit txFont and txMode fields.

You can find more about the meaning of these codes in the QuickDraw
information in Inside Macintosh. Macintosh Common Lisp provides
high-level functions to manipulate them for you.

Functions related to font specifications

The following functions implement and use font specifications.

real-font [Function]

Syntax real-font &optional font-spec

Description The real-font function returns t if font-spec corresponds to a font or
font size that actually exists in the system (in other words, that is not a
calculated font). Otherwise, the function returns nil.

The font style and transfer mode are ignored by real-font. If font-spec is not
supplied, the font specification of the current GrafPort is used.

Argument font-spec A font specification.

font-spec [Function]

Syntax font-spec ff-code ms-code

Description The font-spec function creates a font specification from font codes.
Arguments ff-code The font-face code. A font-face code is a 32-bit integer that

combines the encoded name of the font and its face (plain,
bold, italic, and so on).
76 Macintosh Common Lisp Reference

ms-code The mode-size code. A mode-size code is a 32-bit integer
that indicates the font mode (inclusive-or, exclusive-or,
complemented, and so on) and the font size.

Example

Here is an example of translating between font codes and font
specifications.

The font-face and mode-size codes are the first two values returned by
font-codes:
? (font-codes '("Monaco" 9 :srcor :plain))

262144

65545

-256

-1

The function font-spec can regenerate the font specification from
them:
? (font-spec 262144 65545)

("Monaco" 9 :SRCOR :PLAIN)

string-width [Function]

Syntax string-width string &optional font-spec

Description The string-width function returns the width in pixels of string, as if it
were displayed in the font, size, and style of font-spec.

If font-spec is not supplied, the font specification of the current GrafPort is used.

See also font-codes-string-width on page 82.

Arguments font-spec A font specification.
string A string.

Example
? (string-width "Hi there" '("Monaco" 9 :PLAIN))

48

grafport-write-string [Macro]

Syntax grafport-write-string string start end
Chapter 2: Points and Fonts 77

Description The grafport-write-string macro draws the portion of string
between start and end to the current GrafPort, which is usually set up by
with-focused-view or with-port. Drawing begins at the pen
position. The macro expands into a call to the #_DrawString trap.

Arguments string A string.
start The beginning of the string to write.
end The end of the string to write.

Example

The generic function stream-write-string could be written as
follows. (This version does not handle strings that contain newlines.)
? (defmethod stream-write-string

 ((stream simple-view) string start end)

 (with-font-focused-view stream

 (grafport-write-string string start end)))

STREAM-WRITE-STRING

font-info [Function]

Syntax font-info &optional font-spec

Description The font-info function returns four values that represent (in pixels) the
ascent, descent, maximum width, and leading of font-spec.

The ascent is the distance from the baseline to the highest ascender of the font,
the descent is the distance from the baseline to the lowest descender of the font,
the maximum width is that of the widest character in the font, and the leading
is the suggested spacing between lines. Only the font and font-size aspects of
font-spec are used in the calculation. The font styles and transfer mode are not
significant.

If font-spec is nil or not supplied, the font specification of the current GrafPort
is used.

Argument font-spec A font specification.
78 Macintosh Common Lisp Reference

Example
? (defun line-height (font-name font-size)
 (multiple-value-bind (ascent descent maxwidth leading)
 (font-info (list font-name
 font-size))
 (declare (ignore maxwidth)) ;We don't use this value.
 (+ ascent descent leading)))
LINE-HEIGHT
? (line-height "new york" 12)
16
? (line-height "new york" 24)
32
? (line-height "times" 10)
12

view-font [Generic function]

Syntax view-font (view simple-view)
view-font (window window)
view-font (window fred-window)
view-font (window listener)

Description The view-font generic function returns the font specification used for
drawing text in the window. Due to an idiosyncrasy of the Macintosh
computer, a font size of 0 points may appear as a font size of 12 points.

In the Listener, view-font removes boldface text, then calls the method of
window.

In Fred windows, view-font returns three values: the current font, the font
at the insertion point, and a Boolean value specifying whether all the selected
text is in the same font as the current font.

You should not write methods for this function; use view-font-codes
instead.

Arguments view A view or simple view.
window A window, Fred window, or Listener window.

set-view-font [Generic function]

Syntax set-view-font (view simple-view) font-spec

Description The generic function set-view-font sets the font of view to font-
spec.You should not write methods for this function; use set-view-
font-codes instead.
Chapter 2: Points and Fonts 79

Arguments view A simple view.
font-spec A font specification.

Functions related to font codes

The following functions implement and use font codes.

font-codes [Function]

Syntax font-codes font-spec &optional old-ff old-ms

Description The font-codes function creates font codes from a font specification. It
returns four values: the font-face code, the mode-size code, the ff-mask,
and the ms-mask. The two latter values are masks that tell which bits were
specified in the font-face and mode-size codes, respectively.

Arguments font-spec A font specification.
old-ff The old font/face code. A font/face code is a 32-bit

integer that combines the encoded name of the font and
its face (plain, bold, italic, and so on). If there is an old-ff,
its values are used if the new font specification specifies
no value for either the font name or its face. If old-ff is nil
or unspecified, it defaults to 0.

old-ms The old mode-size code. A mode-size code is a 32-bit
integer that indicates the font mode (inclusive-or,
exclusive-or, complemented, and so on) and the font size.
If there is an old-ms, its values are used if the new font
specification specifies no value for either the font mode or
its size. If old-ms is nil or unspecified, it defaults to 65536
(the code for a mode of :SRCOR and a size of 0).

Examples

Here is an example of getting and reading font codes.
? (setq *print-base* 16)

10

? (font-codes '("Geneva" 9 :plain))

30000

10009

-100

FFFF
80 Macintosh Common Lisp Reference

The txFont value for Geneva is 3, the txFace value for:plain is 0,
the txSize value is 9, and the txMode value was not specified (hence
the ms-mask is #xFFFF) but defaults to 1.

Here is an example of using old font codes to modify the returned font
code:
? (font-codes '("Monaco" 12 :BOLD))

262400

65548

-65280

65535

? (font-codes '("Times" 15))

1310720

65551

-65536

65535

? (font-codes '("Times" 15) 262400 65548)

1310976

65551

-65536

65535

? (font-spec 1310976 65551)

("Times" 15 :SRCOR :BOLD)

font-codes-info [Function]

Syntax font-codes-info ff ms

Description The font-codes-info function returns four values that represent (in
pixels) the ascent, descent, maximum width, and leading of the font
specified by ff and ms.

The ascent is the distance from the baseline to the highest ascender of the font,
the descent is the distance from the baseline to the lowest descender of the font,
the maximum width is that of the widest character in the font, and the leading
is the suggested spacing between lines. Only the font and font-size aspects of
font-spec are used in the calculation. The font styles and transfer mode are not
significant.

Arguments ff The font/face code.
ms The mode/size code.
Chapter 2: Points and Fonts 81

Example
? (setq *print-base* 10.)

10

? (multiple-value-bind (ff ms) (font-codes '("Geneva" 9))

 (font-codes-info ff ms))

10

2

10

0

? (font-info '("Geneva" 9))

10

2

10

0

font-codes-line-height [Function]

Syntax font-codes-line-height ff ms

Description The function font-codes-line-height returns the line height for the
font specified by ff and ms.

Arguments ff A font/face code. A font/face code is a 32-bit integer that combines the
name of the font and its face (e.g., plain, bold, italic).
For more information see “Functions related to font
codes” on page 80.

msA mode/size code. A mode/size code is a 32-bit integer that indicates the
font mode (e.g., inclusive-or, exclusive-or, complemented)
and the font size.

Example

? (multiple-value-bind (ff ms) (font-codes '("courier" 12 :plain))

(font-codes-line-height ff ms))

12

font-codes-string-width [Function]

Syntax font-codes-string-width string ff ms

Description The function font-codes-string-width returns the width in pixels of
string using the font specified by ff and ms.
82 Macintosh Common Lisp Reference

Arguments stringA character string.
ff A font/face code. A font/face code is a 32-bit integer that combines the

name of the font and its face (e.g., plain, bold, italic).
For more information, see “Functions related to font
codes” on page 80.

msA mode/size code. A mode/size code is a 32-bit integer that indicates the
font mode (e.g., inclusive-or, exclusive-or, complemented)
and the font size.

Example
? (multiple-value-bind (ff ms) (font-codes '("courier" 12
:plain))

(font-codes-string-width "hello there" ff ms))

77

view-font-codes [Generic function]

Syntax view-font-codes (view simple-view)
view-font-codes (item dialog-item)
view-font-codes (window window)

Description The view-font-codes generic function returns two values, the font/
face code and mode/size code for view’s font.

Arguments view A simple view.
item A dialog item.
window A window.

Example
? (setq w (make-instance 'window

 :view-font '("New York" 10 :bold)))

#<WINDOW "Untitled" #xDB5B39>

? (view-font w)

("New York" 10 :SRCOR :BOLD)

? (view-font-codes w)

131328

65546

? (font-spec 131328 65546)

("New York" 10 :SRCOR :BOLD)
Chapter 2: Points and Fonts 83

set-view-font-codes [Generic function]

Syntax set-view-font-codes (view simple-view) ff ms &optional
ff-mask ms-mask

set-view-font-codes (item dialog-item) ff ms &optional
ff-mask ms-mask

set-view-font-codes (window window) ff ms &optional
ff-mask ms-mask

Description The generic function set-view-font-codes changes the view font
codes of view. The font/face code is changed only in the bits that are set in
ff-mask. The mode/size code is changed only in the bits that are set in ms-
mask. These masks default to passing all bits of ff and ms.

Arguments view A simple view.
item A dialog item.
window A window.
ff The font/face code. A font/face code is a 32-bit integer

that stores the encoded name of the font and its face
(plain, bold, italic, and so on). If there is no ff, the value of
ff is set to 0.

ms The mode/size code. A mode/size code is a 32-bit integer
that indicates the font mode (inclusive-or, exclusive-or,
complemented, and so on) and the font size. If there is no
ms, the value of ms is set to 0.

ff-mask A mask that allows set-view-font-codes to look
only at certain bits of the font/face integer. Fred dialog
items and Fred windows ignore this parameter; other
views and windows use it as a mask.

ms-mask A mask that allows set-view-font-codes to look
only at certain bits of the mode/size integer. Fred dialog
items and Fred windows ignore this parameter; other
views and windows use it as a mask.

Example
? (font-codes '("Geneva" 9))

196608

65545

-65536

65535

? (font-spec 196608 65545)

("Geneva" 9 :SRCOR :PLAIN)

? (set-view-font-codes w 196608 65545 -65536 65535)

196864

65545

? (view-font w)
84 Macintosh Common Lisp Reference

("Geneva" 9 :SRCOR :BOLD)

? (set-view-font-codes w 196608 65545)

196608

65545

? (view-font w)

("Geneva" 9 :SRCOR :PLAIN)

grafport-font-codes [Function]

Syntax grafport-font-codes

Description The grafport-font-codes function returns two values, the font codes
of the current GrafPort.

set-grafport-font-codes [Function]

Syntax set-grafport-font-codes ff ms &optional ff-mask ms-mask

Description The set-grafport-font-codes function sets the font codes of the
current GrafPort.

Arguments ff The new font/face code, expressed as a fixnum.
ms The new mode/size code, expressed as a fixnum.
ff-mask A mask that allows set-grafport-font-codes to

look only at certain bits of the font/face integer.
ms-mask A mask that allows set-grafport-font-codes to

look only at certain bits of the mode/size integer.

wptr-font-codes [Function]

Syntax wptr-font-codes wptr

Description The wptr-font-codes function returns the font codes of wptr.

Argument wptr A window pointer.

set-wptr-font-codes [Function]

Syntax set-wptr-font-codes wptr ff ms &optional ff-mask ms-mask
Chapter 2: Points and Fonts 85

Description The set-wptr-font-codes function sets the font codes of wptr to the
new font codes indicated by ff and ms.

Arguments wptr A window pointer.
ff The new font/face code, expressed as a fixnum.
ms The new mode/size code, expressed as a fixnum.
ff-mask A mask that allows set-wptr-font-codes to look

only at certain bits of the font/face integer.
ms-mask A mask that allows set-wptr-font-codes to look

only at certain bits of the mode/size integer.

merge-font-codes [Function]

Syntax merge-font-codes old-ff old-ms ff ms &optional ff-mask
ms-mask

Description The merge-font-codes function merges two font codes.

Arguments old-ff The old font/face code, expressed as a fixnum. A font/
face code stores the encoded name of the font and its face
(plain, bold, italic, and so on). If there is no old-ff, the value
of old-ff is set to 0.

old-ms The old mode/size code, expressed as a fixnum. A mode/
size code indicates the font mode (inclusive-or, exclusive-
or, complemented, and so on) and the font size. If there is
no old-ms, the value of old-ms is set to 0.

ff The new font/face code, expressed as a fixnum
ms The new mode/size code, expressed as a fixnum.
ff-mask A mask that allows merge-font-codes to look only at

certain bits of the font/face integer.
ms-mask A mask that allows merge-font-codes to look only at

certain bits of the mode/size integer.

Examples

The function merge-font-codes could be written as follows:
(defun merge-font-codes (old-ff-code old-ms-code ff-code ms-
code

 &optional ff-mask ms-mask)

 (values

 (if ff-mask

 (logior (logand ff-code ff-mask)

 (logand old-ff-code (lognot ff-mask)))

 ff-code)

 (if ms-mask
86 Macintosh Common Lisp Reference

 (logior (logand ms-code ms-mask)

 (logand old-ms-code (lognot ms-mask)))

 ms-code)))

Here is an example of merging font codes. This example is in
hexadecimal.
(setf *print-base* 16)

10

? (font-codes '("Geneva" 9 :plain))

30000

10009

-100

FFFF

? (font-codes '(:bold :italic :notpatxor))

300

E0000

300

-10000

? (merge-font-codes #x30000 #x10009 #x300 #xe0000 #x300 #x-
10000)

30300

E0009

? (font-spec #x30300 #xe0009)

("Geneva" 9 :NOTPATXOR :ITALIC :BOLD)

Here is a more condensed version of the same merging.
? (multiple-value-bind (ff ms)

 (font-codes '("Geneva" 9 :plain))

 (multiple-value-bind (bin-ff bin-ms ff-mask ms-mask)

 (font-codes '(:bold :italic :notpatxor))

 (multiple-value-bind

 (merged-ff merged-ms)

 (merge-font-codes ff ms bin-ff bin-ms

 ff-mask ms-mask)

 (font-spec merged-ff merged-ms))))

("Geneva" 9 :NOTPATXOR :ITALIC :BOLD)

System data

The following symbols are bound to useful Macintosh system data.
Chapter 2: Points and Fonts 87

font-list [Variable]

Description The *font-list* variable contains a list of all the fonts installed in the
current Macintosh Operating System, sorted alphabetically.

pen-modes [Variable]

Description The *pen-modes* variable contains a list of pen-mode keywords.

Example

Macintosh traps (and pen-state records) encode pen modes as integers.
These integers match the zero-based numeric position of the keyword
in the *pen-modes* list. So, for example, the number of :srcor pen
mode could be coded as (position :srcor *pen-modes*). The
inverse operation (turning a pen-mode integer into a keyword) can be
performed with the Common Lisp function elt.
? *pen-modes*

(:srccopy :srcor :srcxor :srcbic :notsrccopy :notsrcor
:notsrcxor :notsrcbic :patcopy :pator :patxor :patbic
:notpatcopy :notpator :notpatxor :notpatbic)

? (position :srcor *pen-modes*)

1

style-alist [Variable]

Description The *style-alist* variable contains an association list of font-style
keywords and numbers that the Macintosh computer uses to encode these
styles.

The Macintosh Operating System encodes styles as a byte, with each style
represented by a bit (this encoding allows multiple styles). You can derive a
byte to pass to the Macintosh computer by adding the numbers corresponding
to the styles listed here.

Example
? *style-alist*

((:plain . 0)(:bold . 1)
 (:italic . 2)(:underline . 4)
 (:outline . 8)(:shadow . 16)
 (:condense . 32)(:extend . 64))
88 Macintosh Common Lisp Reference

white-pattern [Variable]

black-pattern [Variable]

gray-pattern [Variable]

light-gray-pattern [Variable]

dark-gray-pattern [Variable]

Description These variables hold Macintosh pen patterns. The patterns may be passed
to traps or used with QuickDraw calls.

screen-width [Variable]

screen-height [Variable]

Description These variables contain the width and height, in pixels, of the current
screen. On a Macintosh Plus or Macintosh SE computer, the width is 512
pixels and the height is 342 pixels. On a Macintosh II computer with
multiple screens, the values refer to the main screen.

pixels-per-inch-x [Variable]

pixels-per-inch-y [Variable]

Description These variables contain the number of pixels per inch on the Macintosh
computer screen in the horizontal and vertical directions. On a Macintosh
Plus or Macintosh SE computer, both values are 72. On other Macintosh
computers, the values vary according to the screen used. On a computer
with multiple screens, the values refer to the main screen.

menubar-bottom [Variable]

Description The *menubar-bottom* variable holds the vertical coordinate of the
first QuickDraw point below the menu bar. It is provided so that windows
do not draw themselves in the area taken up by the menu bar, but use only
the area below the bottom of the menu bar.
Chapter 2: Points and Fonts 89

In Macintosh Common Lisp version 2, this variable is defined as (+ (%get-
word (%int-to-ptr $MBarHeight)) 18). Since 18 is the height of the
title bar of a window with the standard window definition function, this
variable has questionable utility for setting the position of any other type of
window.
90 Macintosh Common Lisp Reference

Chapter 3:

Menus

Contents

How menus are created 98
How menus are created / 93
A sample menu file / 93
The menu-element class / 94
The menubar / 94

Menubar forms / 94
The built-in menus / 96
Menubar colors / 98

Menus / 100
MCL forms relating to menus / 100
MCL forms relating to elements in menus / 104
MCL forms relating to colors of menu elements / 106
Advanced menu features / 108

Menu items / 110
MCL forms relating to menu items / 111
MCL forms relating to menu item colors / 118

Window menu items / 120
Window menu item functions / 121
Window menu item class / 122

Updating the menubar / 123
The Apple menu / 124
Example: A font menu / 124

Example: A font menu 135

This chapter discusses how menus and menu items are created in Macintosh
Common Lisp, how they are installed, and how you can customize them.

This chapter first discusses the class structure of menus and menu items, then
discusses the associated MCL functions in detail. It describes how to add colors
to menus and menu items, and discusses a specialized class, window menu
items.

If you are creating your own menus or customizing the MCL menus, you
should read this chapter.
91

A simple MCL application for editing menus is documented in Chapter 7: The
Interface Toolkit.
92 Macintosh Common Lisp Reference

How menus are created

In Macintosh Common Lisp, menus and menu items are instances of
CLOS classes. A menu is created from the class menu. A menu item is
created from the class menu-item. Both menus and menu items inherit
from a direct superclass, menu-element, which is an abstract class; it
isn’t instantiated directly.

Menus appear in the menubar, the list of menus visible at the top of the
screen. A menu is not visible until you use menu–install to add it to
the menubar.

A menu is a list of menu items (which may themselves be menus).
Menus can be installed at the top level of the menubar or as items on
other menus, for implementing hierarchical menus.

Menus and menu items can be created at any time. They can exist, and
you can perform operations on them, without being installed on the
menubar. For example, menu items can be added to and removed from
menus, whether or not the menus are installed in the menubar.

Because of the requirements of the Macintosh Operating System, the
Apple menu is a special case; not all items can be removed from it, and
it cannot be removed from the menubar.

It is often desirable to separate items in a menu into groups by placing
a dotted line between the groups. A menu item whose title is the string
"-" appears as a dotted line and cannot be selected.

A sample menu file

In the Examples folder distributed with your copy of Macintosh
Common Lisp, look at font-menus.lisp for an annotated example
of how a typical menu is created. Load font-menus.lisp to see the
font menu in action.
Chapter 3: Menus 93

The menu-element class

The general behavior of menus and menu items is defined by the class
menu-element. Both menu and menu-item inherit from menu-
element, so any method defined for menu-element is applicable to
menus and menu items.

menu-element [Class name]

Description This is the class of menu elements, on which menus and menu items are
built. This class is not instantiated directly.

The menubar

At any given point, a set of menu titles is displayed across the top of the
screen. This group forms the menubar.

At any time, only one menubar can be displayed. Other menubars can
be defined, however, and you can rotate among them.

You can use the generic function menu-install to install a menu in
the menubar and the function set-menubar to change the entire
menubar.

Menubar forms

The following MCL forms control menubars.

menubar [Class name]

Description The menubar class is built on standard-object. Its single instance is
used to set the colors of parts of the menubar. It is not currently used for
any other purpose.
94 Macintosh Common Lisp Reference

menubar [Variable]

Description The value of the *menubar* variable is the single instance of the
menubar class.

menubar [Function]

Syntax menubar

Description The menubar function returns a list of the menus currently installed in the
menubar.

Example
? (menubar)

(#<APPLE-MENU ""> #<MENU "File"> #<MENU "Edit"> #<MENU
"Lisp"> #<MENU "Tools"> #<MENU "Windows">)

set-menubar [Function]

Syntax set-menubar new-menubar-list

Description The set-menubar function installs a new set of menus in the current
menubar.

First the menu-deinstall function is applied to each installed menu except
the Apple menu, and then the menu-install function is applied to each
menu in new-menubar-list. The new-menubar-list may be empty, in which case
the menubar is simply cleared. The function returns new-menubar-list.

You can never remove the Apple menu. Even if you call
(set-menubar nil), the Apple menu remains in the menubar.

Argument new-menubar-listA list of menus.

Example
? (setq foo (menubar))
(#<Apple-Menu ""> ;No Apple character in this font.
 #<Menu "File">
 #<Menu "Edit">
 #<Menu "Lisp">
 #<Menu "Tools">
 #<Menu "Windows">)
Chapter 3: Menus 95

;Assume a menu, MY-FROGS-MENU, whose title is "Tree Frogs":
? (set-menubar (list (car foo) my-frogs-menu))
(#<Apple-Menu "">
 #<Menu "Tree Frogs">)
? (menubar)
(#<Apple-Menu "">
 #<Menu "Tree Frogs">)

find-menu [Function]

Syntax find-menu string

Description The find-menu function returns the first menu in the menubar that has
string as its title. If no matching menu is found, it returns nil.

Argument string A string giving the title of the menu to find.

Example
? (find-menu "Edit")
#<MENU "Edit">

The built-in menus

default-menubar [Variable]

Description The variable *default-menubar* contains a list of the menus that are
installed when you first start Macintosh Common Lisp. You may use set-
menubar to restore the original menus after installing your own set of
menus.

Note that *default-menubar* is simply a list of the menus present when
Macintosh Common Lisp starts up. It does not contain any code for initializing
these menus. If you destructively change the startup menus, then *default-
menubar* will contain the changed menus. Calling (set-menubar
default-menubar) will not undo those modifications.

Example

Here is an example of using *default-menubar*.
? (setq frogs (menubar))

(#<Apple-Menu "">
 #<Menu "Tree Frogs">)
96 Macintosh Common Lisp Reference

? (set-menubar *default-menubar*)
(#<Apple-Menu "">
 #<Menu "File">
 #<Menu "Edit">
 #<Menu "Lisp">
 #<Menu "Tools">
 #<Menu "Windows">)

? (set-menubar frogs)

(#<Apple-Menu "">
 #<Menu "Tree Frogs">)

apple-menu, *edit-menu*, *eval-menu*, *file-menu*,

lisp-menu, *tools-menu*, and *windows-menu*

apple-menu [Variable]

Description The variable *apple-menu* contains the Apple menu from the initial
menubar. Because of the special handling of this menu by the Macintosh
OS, you should be very careful adding or removing commands from it.

file-menu [Variable]

Description The variable *file-menu* contains the File menu from the initial
menubar.

edit-menu [Variable]

Description The variable *edit-menu* contains the Edit menu from the initial
menubar.

lisp-menu [Variable]

Description The variable *lisp-menu* contains the Lisp menu from the initial
menubar.
Chapter 3: Menus 97

tools-menu [Variable]

Description The variable *tools-menu* contains the Tools menu from the initial
menubar.

windows-menu [Variable]

Description The variable *windows-menu* contains the Windows menu from the
initial menubar. Because of MCL’s special handling of this menu, you
should take care adding and removing menu-items from it.

Menubar colors

Menu titles in the menubar can be colored. You can set the background
color of the menubar, give menus and menu items a default color, and
specify a default background color for pull-down menus.

The following functions, defined on the class menubar, operate on
colors.

part-color [Generic function]

Syntax part-color (menubar menubar) part

Description The part-color generic function returns the color of part, a part of the
menubar. See Chapter 6: Color for a description of color encoding.

Arguments menubar The current menubar, the only instance of the class
menubar.

part A keyword specifying which part of the menubar should
be set. The four possible keywords have the following
effects:

:default-menu-title
The default color used for the titles of menus in the
menubar.

:default-menu-background
The default color used for the background of the pull-
down menus accessed from the menubar.

:default-menu-item-title
The default color used for the titles of menu items.
98 Macintosh Common Lisp Reference

:menubar The background color of the menubar itself.

Example
? (part-color *menubar* :menubar)

16777215

set-part-color [Generic function]

Syntax set-part-color :after (menubar menubar) part color

Description The set-part-color generic function sets the color of part, a part of the
menubar, to color.

Arguments menubar The current menubar, the only instance of the class
menubar.

part A keyword specifying which part of the menubar should
be set. The keywords are the same as for part-color.

color The new color, encoded as an integer. (See Chapter 6:
Color)

Example
? (set-part-color *menubar* :menubar *red-color*)

14485510

part-color-list [Generic function]

Syntax part-color-list (menubar menubar)

Description The part-color-list generic function returns a property list of
keywords and colors for all the parts of the menubar.

Argument menubar The current menubar, the only instance of the class
menubar.

Example
? (part-color-list *menubar*)

(:MENUBAR 14485510 :DEFAULT-ITEM-TITLE 0 :DEFAULT-MENU-
BACKGROUND 16777215 :DEFAULT-MENU-TITLE 0)
Chapter 3: Menus 99

Menus

Menus contain sets of menu items. Menus can be added to the menubar,
or they can be added to other menus. When they are added to other
menus, they are treated as menu items; hierarchical menus are
implemented in this way.

MCL forms relating to menus

The following MCL forms control menus.

menu [Class name]

Description The class of menus, built on menu-element. All menus are instantiated
on the class menu or one of its subclasses. There are
no built-in subclasses of menu, but you can define subclasses.

initialize-instance [Generic function]

Syntax initialize-instance (menu menu) &rest initargs

Description This generic function initializes the menu so that you can add menu items
to it and install it. (When instances are actually made, the function used is
make-instance, which calls initialize-instance; see the example
that follows.)

The initialize-instance function initializes the menu but does not add
it to the menubar. To add the menu, use the function menu-install.

Arguments menu A menu.
initargs A set of initialization arguments and values used for

initializing the menu:
:menu-title

A string giving the title of the menu. The default is
"Untitled".

:menu-items
A list of items to be added to the newly created menu.

:menu-colors
A property list of menu parts and colors. The allowable
parts are given in the definition of set-part-color.
100 Macintosh Common Lisp Reference

:update-function
A function to be run when the menu item is updated. The
default is nil.

:help-spec
A value describing the Balloon Help for the menu. This
may be a string or one of a number of more complicated
specifications, which are documented in the file help-
manager.lisp in your Library folder. The default value
is nil.

Example
? (setq food-menu (make-instance 'menu

 :menu-title "Food"

 :menu-colors '(:menu-title #.*red-color*)))

#<MENU "Food">

? (setq bar-menu (make-instance 'menu

 :menu-title "Bar"

 :menu-colors '(:menu-title #.*blue-color*)))

? (menu-title food-menu)

"Food"

? (menu-installed-p food-menu)

NIL ;Not yet installed in the menubar

menu-title [Generic function]

Syntax menu-title (menu menu)

Description The menu-title generic function returns the title of the menu as
a string.

Argument menu A menu.

set-menu-title [Generic function]

Syntax menu-title (menu menu) new-title

Description The set-menu-title generic function sets the menu title to
new-title and returns new-title.

If the menu is installed, the change in title is immediately reflected in the
menubar.
Chapter 3: Menus 101

Arguments menu A menu.
new-title A string.

Example
? (menu-title food-menu)

"Food"

? (set-menu-title food-menu "Chinese Menu")

"Chinese Menu"

? (menu-title food-menu)

"Chinese Menu"

menu-install [Generic function]

Syntax menu-install (menu menu)

Description The menu-install generic function adds the menu to the menubar at
the rightmost position. It returns t.

Argument menu A menu.

Example
? (menu-install food-menu)
T

menu-deinstall [Generic function]

Syntax menu-deinstall (menu menu)

Description The menu-deinstall generic function removes a menu from the
menubar. It returns nil.

You may reinstall the menu at a later time.

Argument menu A menu.

Example
? (menu-deinstall food-menu)
NIL

menu-installed-p [Generic function]

Syntax menu-installed-p (menu menu)
102 Macintosh Common Lisp Reference

Description The menu-installed-p generic function returns t if the menu is
installed and nil if the menu is not installed.

Argument menu A menu.

Example
? (menu-installed-p food-menu)
NIL

menu-disable [Generic function]

Syntax menu-disable (menu menu)

Description The menu-disable generic function disables a menu. Its items may still
be viewed, but they cannot be chosen. The menu and its items appear
dimmed. This function has no effect if the menu is already disabled.

Menus can be enabled and disabled at any time. The effects are visible only
when the menu is installed in the current menubar.

Argument menu A menu.

menu-enable [Generic function]

Syntax menu-enable (menu menu)

Description The menu-enable generic function enables a menu, making it possible to
choose its items. This function has no effect if the menu is already enabled.

Menus can be enabled and disabled at any time. The effects are visible only
when the menu is installed in the current menubar.

Argument menu A menu.

menu-enabled-p [Generic function]

Syntax menu-enabled-p (menu menu)

Description The menu-enabled-p generic function returns t if the menu is enabled
and nil if the menu is disabled.

Argument menu A menu.
Chapter 3: Menus 103

menu-style [Generic function]

Syntax menu-style (menu menu)

Description The menu-style generic function returns the font style in which the
menu appears.

Styles are :plain, :bold, :italic, :shadow, :outline, :underline,
:condense, and :extend. The keyword :plain indicates the absence of
other styles.

Argument menu A menu.

menu-update-function [Generic function]

Syntax menu-update-function (menu menu)

Description The menu-update-function generic function returns the function that
is run when the menu is updated.

Argument menu A menu.

MCL forms relating to elements in menus

The following generic functions are used to add elements to menus,
remove elements from menus, find an element in a menu, and return
the elements in a menu. The element may be either a menu or a menu
item.

add-menu-items [Generic function]

Syntax add-menu-items (menu menu) &rest menu-items

Description The add-menu-items generic function appends menu-items to the menu.
The new items are added to the bottom of the menu in the order specified.
The function returns nil.

Arguments menu A menu.
menu-items Any number of menus and menu items to be added to the

menu.
104 Macintosh Common Lisp Reference

Example
? (add-menu-items food-menu

 (make-instance 'menu-item

 :menu-item-title "Stir-Fried Beep"

 :menu-item-action #'(lambda ()

 (ed-beep)))

 (make-instance 'menu-item

 :menu-item-title "Egg Foo Bar"

 :menu-item-action

 #'(lambda ()

 (get-string-from-user

 "How would you like your eggs?"))))

remove-menu-items [Generic function]

Syntax remove-menu-items (menu menu) &rest menu-items

Description The remove-menu-items generic function removes menu-items from the
menu. The removed menu-items may be reinstalled later or installed in
other menus. It is not an error to attempt to remove an item that is not in
the menu. The remove-menu-items function returns nil.

Arguments menu A menu.
menu-items Any number of menus and menu items to be removed

from the menu.

Example
? (apply #'remove-menu-items food-menu

(menu-items food-menu))

NIL

menu-items [Generic function]

Syntax menu-items (menu menu) &optional menu-item-class

Description The menu-items generic function returns a list of the menu items
installed in the menu.

The menu items are listed in the order in which they appear in the menu.

Arguments menu A menu.
Chapter 3: Menus 105

menu-item-class
The class from which the returned menu items inherit.
The default value is menu-element. Only those menu
items that inherit from menu-item-class are included in the
list that is returned.

Example
? (menu-items food-menu)

(#<MENU-ITEM "Stir-Fried Beep">

 #<MENU-ITEM "Egg Foo Bar">)

find-menu-item [Generic function]

Syntax find-menu-item (menu menu) title

Description The find-menu-item generic function returns the first menu item in the
menu whose name is title, which should be a string. If no menu item is
titled title, nil is returned.

Arguments menu A menu.
title A string giving the name of the menu item to find.

Example
? (find-menu-item food-menu "Beep")

NIL

? (find-menu-item food-menu "Stir-Fried Beep")

#<MENU-ITEM "Stir-Fried Beep">

help-spec [Generic function]

Syntax help-spec (menu-element menu-element)

Description The help-spec generic function returns the text of the Balloon Help
associated with menu-element. If it has none, nil is returned.

Argument menu-element A menu or menu item.

MCL forms relating to colors of menu elements

Like the menubar, menus and parts of menus can be colored.
106 Macintosh Common Lisp Reference

part-color [Generic function]

Syntax part-color (menu menu) part

Description The part-color generic function returns the color of part, a part of the
menu. See Chapter 6: Color for a description of color encoding.

Arguments menu A menu.
part A keyword specifying a part of the menu. The three

possible keywords have the following meanings:
:menu-title

The color in which the title of the menu is displayed in the
menubar.

:menu-background
The color used for the background of the pull-down
menu.

:default-menu-item-title
The default color used for the titles of items in the menu.

Example
? (part-color food-menu :menu-title)

14485510

set-part-color [Generic function]

Syntax set-part-color (menu menu) part color

Description The set-part-color generic function sets the color of part, a part of the
menu specified by the arguments, and returns color.

Arguments menu A menu.
part A keyword specifying which part of the menu should be

set. The keywords are the same as for part-color.
color The new color, encoded as an integer. (See Chapter 6:

Color.)

Example
? (set-part-color food-menu :menu-title #.*orange-color*)

16737282

part-color-list [Generic function]

Syntax part-color-list (menu menu)
Chapter 3: Menus 107

Description The part-color-list generic function returns a property list of part
keywords and colors for all the parts of the menu.

Argument menu A menu.

Example
? (part-color-list food-menu)

(:MENU-TITLE 17630104)

Advanced menu features

The advanced menu programmer may find the following MCL forms
useful.

menu-update [Generic function]

Syntax menu-update (menu menu)

Description The menu-update generic function is called whenever the user clicks in
the menubar or presses a command-key equivalent. The menu-update
method for menus calls the menu’s menu-update-function on menu if
it has one; otherwise it calls menu-item-update on each item in the
menu. This facility is provided so that menus and menu items can be
adjusted to the current program context before they are displayed. (For
example, an item may be checked or unchecked, enabled or disabled,
added, removed, or reordered.)

You can specialize menu-update, but you normally do not need to call it. (It
is called by the MCL run-time system.)

Argument menu A menu.

menu-handle [Generic function]

Syntax menu-handle (menu menu)

Description If the menu is installed, the menu-handle generic function returns the
handle to the menu’s menu record on the Macintosh heap. If the menu is
not installed, menu-handle returns nil.

The menu handle can be useful when low-level operations are performed with
the Macintosh ROM. You should not modify this value.
108 Macintosh Common Lisp Reference

Argument menu A menu.

Example
? (menu-handle food-menu)
#<A Mac Handle, Unlocked, Size 34 #x6118EC>

menu-id [Generic function]

Syntax menu-id (menu menu)

Description If the menu is installed, the menu-id generic function returns the unique
numeric ID of the menu, used by the Macintosh Operating System. If the
menu is not installed, this function returns nil. If a menu is removed from
the menubar and later reinstalled, it may be given a different ID.

Argument menu A menu.

Example
? (menu-id food-menu)
12

menu-id-object-alist [Variable]

Description The *menu-id-object-alist* variable contains an association list
mapping menu ID numbers (used by the Macintosh Operating System) to
MCL menu objects. You may wish to look at this list, but you should not
modify it.

menubar-frozen [Variable]

Description The *menubar-frozen* variable is typically bound to t while several
menu changes are made. Once the changes are complete, a call to draw-
menubar-if draws the new menubar all at once. This mechanism can
prevent undue flickering of the menubar.

If the value of this variable is true, no menubar redrawing will occur.

If the value of this variable is nil, the menubar will be redrawn.

If you use *menubar-frozen*, it is up to you to later call draw-menubar-
if. The menubar is not redrawn automatically.
Chapter 3: Menus 109

draw-menubar-if [Function]

Syntax draw-menubar-if

Description The draw-menubar-if function redraws the menubar (by calling the
trap #_DrawMenuBar) if the value of *menubar-frozen* is nil. If the
value of *menubar-frozen* is not nil, no action is taken.

Menu items

Menu items form the bodies of menus. They are instances of the class
menu-item, which is a subclass of menu-element. Every menu item
is associated with some action, or occasionally with nil, which means
the menu item does nothing.

When you create an instance of a menu item, you include a value for the
:menu-item-action initialization argument; that value should be a
function of no arguments. You can get that value with the accessor
function menu-item-action-function and change it with set-
menu-item-action-function.

Whenever the user chooses a menu item (by either clicking it or
pressing a key equivalent), the current program is interrupted and the
menu item’s definition of the generic function menu-item-action is
run. The default menu-item-action calls (menu-item-action-
function menu-item) and applies the result to no arguments.

You can specialize this behavior for your own menu items.

When menu-item-action returns, execution of the previous
program resumes. (The value returned by the call to menu-item-
action is not used.)

Here is an example of a menu item definition with a simple value for
the :menu-item-action initialization argument.
(MAKE-INSTANCE 'MENU-ITEM

 :MENU-ITEM-TITLE "Beep three times"

 :MENU-ITEM-ACTION

 #'(LAMBDA NIL

 (ED-BEEP)

 (ED-BEEP)

 (ED-BEEP)))
110 Macintosh Common Lisp Reference

The menu-item-action-function method is executed at interrupt
level, and further event processing is disabled while it is executed.
Therefore, if a menu item initiates a lengthy process, the process
shouldn’t be executed directly as a menu-item-action; instead, it
should be inserted into the normal read-eval-print loop using the
function eval-enqueue. For a complete description of eval-
enqueue, see Chapter 10: Events.

MCL forms relating to menu items

The following MCL forms are provided for programming menu items.

The forms specialized on menu-element can also be applied to menus
installed as hierarchical menus.

menu-item [Class name]

Description The menu-item class, built on the class menu-element, is used to create
menu items.

initialize-instance [Generic function]

Syntax initialize-instance (menu-item menu-item) &rest initargs

Description The initialize-instance primary method for menu-item initializes
a menu item so that it can be installed in a menu. (When instances are
actually made, the function used is make-instance, which calls
initialize-instance.)

Arguments menu-item A menu item.
initargs The initialization arguments for the menu item and their

initial values, if any:
:owner The menu in which the menu item is installed. The default

value is nil.
:menu-item-title

The title of the menu item. The default value is
"Untitled".

:command-key
If the value of :command-key is nil, then the menu item
has no keyboard equivalent. If the value of :command-
key is a character, then that character key is the
equivalent.
Chapter 3: Menus 111

:menu-item-action
The action performed when the menu item is selected.
This may be a function or a symbol with a function
binding. The accessors for this initialization argument are
menu-item-action-function and set-menu-
item-action-function.

:disabled
If the value of :disabled is true, the menu item is
disabled.

:menu-item-colors
A property list of part keywords and colors. See the set-
part-color method for menu items, described in “MCL
forms relating to menu item colors” on page 118.

:menu-item-checked
The value of this keyword may be t, nil, a character, or
a number indicating the check mark of the menu item.
The values have the same meanings as for the function
set-menu-item-check-mark.

:style A keyword or list of keywords indicating the font style of
the menu item. See the description of the function menu-
item-style later in this section.

:update-function
A function to be run when the menu item is updated. The
default is nil. The accessors of this argument are menu-
item-update-function and set-menu-item-
update-function.

:help-spec
A value describing the Balloon Help for the menu item.
This may be a string or one of a number of more
complicated specifications, which are documented in the
file help-manager.lisp in your Library folder. The
default value is nil.

Example
? (setq yu-shiang-kitty-paws

 (make-instance 'menu-item

 :menu-item-title "Yu Shiang Kitty-Paws"

 :help-spec "Prints a horrible pun."

 :menu-item-action

 #'(lambda ()

 (print "The paws that refreshes."))))

#<MENU-ITEM "Yu Shiang Kitty Paws">

menu-item-action [Generic function]

Syntax menu-item-action (menu-item menu-item)
112 Macintosh Common Lisp Reference

Description The menu-item-action generic function is called whenever the user
chooses the menu item or presses the keyboard equivalent. The method
defined on menu-item calls the function that is the value of menu-item-
action of menu-item.

Argument menu-item A menu item.

menu-item-action-function [Generic function]

Syntax menu-item-action-function (menu-item menu-item)

Description The menu-item-action-function accessor function returns the
function that is the value of menu-item-action of menu-item.

Argument menu-item A menu item.

set-menu-item-action-function [Generic function]

Syntax set-menu-item-action-function (menu-item menu-item) new-
function

Description The set-menu-item-action-function generic function sets the
value of menu-item-action-function of menu-item to new-function
and returns new-function.

Arguments menu-item A menu item.
new-function The new function associated with the menu item.

menu-item-title [Generic function]

Syntax menu-item-title (menu-item menu-item)

Description The menu-item-title generic function returns the title of the menu
item as a string.

Argument menu-item A menu item.

set-menu-item-title [Generic function]

Syntax set-menu-item-title (menu-item menu-item) new-title
Chapter 3: Menus 113

Description The set-menu-item-title generic function sets the title of the menu
item to new-title and returns new-title.

If menu-item-title is "-", then the menu item appears as an unselectable
dotted line. Such items are useful for separating sets of items in a menu.

Arguments menu-item A menu item.
new-title A string, the new title of the menu.

Example
? (menu-item-title hot-machine-item)
"Hunan Lambda"
? (set-menu-item-title hot-machine-item "Szechuan Mac")
"Szechuan Mac"
? (menu-item-title hot-machine-item)
"Szechuan Mac"

menu-item-disable [Generic function]

Syntax menu-item-disable (menu-item menu-element)

Description The menu-item-disable generic function disables menu-item so that it
cannot be chosen. The function has no effect if the menu item is already
disabled.

Argument menu-item A menu item or menu; a menu element.

menu-item-enable [Generic function]

Syntax menu-item-enable (menu-item menu-element)

Description The menu-item-enable generic function enables a menu item so that
the user can choose it. The function has no effect if the menu item is
already enabled.

Argument menu-item A menu item or menu; a menu element.

menu-item-enabled-p [Generic function]

Syntax menu-item-enabled-p (menu-item menu-element)

Description The generic function menu-item-enabled-p returns t if the menu item
is enabled and nil if the menu item is disabled.
114 Macintosh Common Lisp Reference

Argument menu-item A menu item or menu; a menu element.

command-key [Generic function]

Syntax command-key (menu-item menu-element)

Description The command-key generic function returns the keyboard equivalent of
the menu item. If there is no keyboard equivalent, the function returns
nil.

Argument menu-item A menu item or menu; a menu element.

set-command-key [Generic function]

Syntax set-command-key (menu-item menu-element) character

Description The set-command-key generic function sets the keyboard equivalent of
the menu item to character, or to nothing if character is nil.

To change the command key, call set-command-key again.

Arguments menu-item A menu item or menu; a menu element.
character The character to use as the keyboard equivalent. This

should be a character or nil. If it is nil, the menu item
has no keyboard equivalent. Characters used as
equivalents are usually uppercase.

Example

This code sets the keyboard equivalent of yu-shiang-kitty-paws to
Command-R:
? (set-command-key yu-shiang-kitty-paws #\R)

NIL

Note that when you use this keyboard command, you do not need to
type the R as an uppercase letter; that is, you press Command-R, not
Command-Shift-R.

menu-item-check-mark [Generic function]

Syntax menu-item-check-mark (menu-item menu-item)
Chapter 3: Menus 115

Description The menu-item-check-mark generic function returns the character
currently used as a check mark beside the menu item, or nil if the
command is not currently checked.

Argument menu-item A menu item.

set-menu-item-check-mark [Generic function]

Syntax set-menu-item-check-mark (menu-item menu-item)
new-mark

Description The set-menu-item-check-mark generic function sets the character to
be used as a check mark beside the menu item.

If new-mark is nil, no check mark appears next to the command. If new-mark is
t, then a standard check-mark symbol (√) appears beside the command. If it is
a character or the ASCII value of a character, then the corresponding character
appears next to the menu item. The function returns new-mark.

Arguments menu-item A menu item.
new-mark A character, the ASCII value of a character, t, or nil.

Example

Here is an example of putting a check mark beside the menu item yu-
shiang-kitty-paws. (The reader macro for the check mark character
is #\CheckMark.)
? (set-menu-item-check-mark yu-shiang-kitty-paws t)

#\CheckMark

menu-item-style [Generic function]

Syntax menu-item-style (menu-item menu-element)

Description The menu-item-style generic function returns the font style in which
the menu item appears.

Styles are :plain, :bold, :italic, :shadow, :outline, :underline,
:condense, and :extend. The keyword :plain indicates the absence of
other styles.

Argument menu-item A menu item or menu; a menu element.

Example
? (menu-item-style yu-shiang-kitty-paws)

:PLAIN
116 Macintosh Common Lisp Reference

set-menu-item-style [Generic function]

Syntax set-menu-item-style (menu-item menu-element) new-styles

Description The set-menu-item-style generic function sets the font style in which
the menu item appears.

Styles are :plain, :bold, :italic, :shadow, :outline, :underline,
:condense, and :extend. The keyword :plain indicates the absence of
other styles.

Arguments menu-item A menu item or menu; a menu element.
new-styles A keyword or list of keywords. Allowable keywords are

:plain, :bold, :italic, :shadow, :outline,
:underline, :condense, and :extend. The keyword
:plain indicates the absence of other styles.

Example
? (set-menu-item-style yu-shiang-kitty-paws

 '(:shadow :underline))

(:SHADOW :UNDERLINE)

menu-item-update [Generic function]

Syntax menu-item-update (menu-item menu-item)

Description The generic function menu-item-update is called when a user clicks a
menu if the menu does not have its own menu-update-function. In
this case, menu-item-update is called on each menu item in the menu.
The user normally does not need to call this function; it is called indirectly
by the MCL event system.

Argument menu-item A menu item.

menu-item-update-function [Generic function]

Syntax menu-item-update-function (menu-item menu-item)

Description The menu-item-update-function generic function returns the
function that is the value of menu-item-update-function for menu-
item.

Argument menu-item A menu item.
Chapter 3: Menus 117

set-menu-item-update-function [Generic function]

Syntax set-menu-item-update-function (menu-item menu-item) new-
function

Description The generic function set-menu-item-update-function sets the
function that is the value of menu-item-update-function of menu-
item.

Arguments menu-item A menu item.
new-function A function or a symbol naming a function.

Example

In this example, a check mark appears beside yu-shiang-kitty-
paws if Macintosh Common Lisp is running in the Eastern time zone.
? (set-menu-item-update-function

 yu-shiang-kitty-paws

 #'(lambda (yu-shiang-kitty-paws)

 (set-menu-item-check-mark yu-shiang-kitty-paws

 (= (ccl::get-time-zone) 5))))

#<Anonymous Function #x4704A6>

A more common use of set-menu-item-update-function is in a
menu of fonts. Only the font used in the active window is checked; the
others are unchecked. A check mark either appears beside or is
removed from the commands in the font menu after the menu-item-
update function, applied by each command, determines the font of the
active window.

MCL forms relating to menu item colors

The following functions control the coloring of the menu items.

part-color [Generic function]

Syntax part-color (menu-item menu-item) part

Description The part-color generic function returns the color of the part of the
menu item specified by part. See Chapter 6: Color for a description of color
encoding.

Arguments menu-item A menu item.
118 Macintosh Common Lisp Reference

part A keyword specifying a part of the menu item. The three
possible keywords have the following effects:

:item-title
The color used for the title of the menu item. This is also
the default color used for the keyboard equivalent and
check mark.

:item-key
The color used for the keyboard equivalent of the menu
item.

:item-mark
The color used for the check mark beside the
menu item.

set-part-color [Generic function]

Syntax set-part-color (menu-item menu-item) part color

Description The set-part-color generic function sets the color of part to color and
returns color.

Arguments menu-item A menu item.

part A part of the menu item. The same keywords are used as
for part-color.

color A color.

part-color-list [Generic function]

Syntax part-color-list (menu-item menu-item)

Description The part-color-list generic function returns a property list of part
keywords and colors for the colored parts of the menu item.

Argument menu-item A menu item.
Chapter 3: Menus 119

Window menu items

Macintosh Common Lisp provides a special class of menu items for
operating on the active window. These are window menu items. Many
menu items act only on the active window. Any window menu item
that does not apply to the active window should be disabled (for
example, Save should be disabled when the active window is the Search
dialog box). Window menu items provide an easy way to create menu
items that act on the active window. Window menu items are
automatically disabled when the active window is of the wrong type.

Every window menu item should have as its menu-item-action-
function a function, a generic function, or a symbol with a function
binding. This function should take one argument, a window. When a
window menu item is selected, its action function is called with the
active window as the argument.

If the action function is a generic function, then the menu item is
applicable only if the generic function has a method suitable for the
class of the front window. If the action function cannot legally be called
with the front window as its argument, the menu item is disabled.

For example, the Save command has as its menu-item-action-
function the function window-save. If the active window has no
method for window-save (for example, if the active window is the
Listener), then Save is disabled. If the class of the active window has a
method for window-save (and if a subsidiary function, window-
needs-saving-p, returns true), then Save is enabled; choosing this
menu item causes the active window to perform window-save.

The menu item may be affected by the context in which it is called; for
example, the Undo menu item may be renamed to reflect what action
will be undone (for instance, Undo Cut, Undo Typing, and so on).

Many of the built-in menu items in Macintosh Common Lisp, including
Save, Save As, Revert, Print, Cut, Copy, Paste, and Select All, are
window menu items. The Search menu item is not a window menu
item, because the Search dialog box can stay on the screen to search
whatever window is currently active.
120 Macintosh Common Lisp Reference

Window menu item functions

The menu items and their corresponding functions are given in Table 3-
1.

■ Table 3-1 Window menu items

Menu item Function

If a window has a definition for one of these functions, then the
corresponding menu item is enabled when the window is active. If the
user chooses the menu item, the function is called on the active
window.

Some of these functions are internal to Macintosh Common Lisp.

Close window-close

Save window-save

Save As… window-save-as

Save Copy As… window-save-copy-as

Revert window-revert

Print… window-hardcopy

Undo undo

Undo More undo-more

Cut cut

Copy copy

Paste paste

Clear clear

Select All select-all

Execute Selection window-eval-selection

Execute Buffer window-eval-whole-buffer

List Definitions window-defs-dialog
Chapter 3: Menus 121

Window menu item class

The following definitions control the behavior of window menu items.

window-menu-item [Class name]

Description This is the class of window menu items.

initialize-instance [Generic function]

Syntax initialize-instance (window-menu-item window-menu-item)&rest
initargs

Description The initialize-instance primary method for window-menu-item
initializes a window menu item so that it may be installed in a menu.
(When instances are actually made, the function used is make-instance,
which calls initialize-instance.)

Arguments window-menu-item
A window menu item.

initargs The initialization arguments for the window menu item.
They are the same as for menu items:

:menu-item-title
The title of the window menu item.

:command-key
If the value of :command-key is nil, then the window
menu item has no keyboard equivalent. If the value of
:command-key is a character, then that character key is
the equivalent.

:menu-item-action
The action performed when the window menu item is
selected. This may be either a function or a symbol with a
function binding. The accessors for this initialization
argument are menu-item-action-function and
set-menu-item-action-function.

:disabled
If the value of :disabled is true, the window menu item
is disabled.

:menu-item-colors
A property list of part keywords and colors.
122 Macintosh Common Lisp Reference

:menu-item-checked
The value of this keyword may be t, nil, a character, or
a number indicating the check mark of the window menu
item. The values have the same meanings as for the
function set-menu-item-check-mark.

:style A keyword or list of keywords indicating the style of the
window menu item. See the description of the function
set-menu-item-style.

:update-function
A function to be run when the menu item is updated. The
default is nil.

:help-spec
A value describing the Balloon Help for the menu. This
may be a string or one of a number of more complicated
specifications, which are documented in the file help-
manager.lisp in your Library folder. The default value
is nil.

The :menu-item-action specified for a window menu item is used
in a special way. When the menu item is selected, the function is called
with the active window as the argument. The menu item is disabled
when the function is a generic function that has no method applicable
to the active window.

Updating the menubar

Macintosh Common Lisp provides a convenient mechanism for
updating the menubar to reflect the program state. The update routine
is run whenever the user clicks a menu title in the menubar or presses
a keyboard equivalent. The routine is run before a pull-down menu or a
menu item is chosen. In this way, the menus and menu items can be
changed before the user sees them.

The update routine is very simple: the generic function menu-update
is run on every installed menu. The default version of menu-update
runs menu-item-update on each of its menu items. You can
specialize update behavior for a menu or menu item by defining
auxiliary methods of menu-update or menu-item-update.

The menu-item-update primary methods are not designed to do the
updating themselves, but rather call menu-item-update-function.
If you write an entirely new menu, you can write a method for menu-
update that handles all the menu items and not have to write any
menu-item-update methods. An example appears in the file view-
example.lisp in the Examples folder.
Chapter 3: Menus 123

The Apple menu

The Apple menu is treated differently from other menus. In particular,
the Apple menu can never be removed. Calling menu-deinstall on
the Apple menu does nothing. One implication of this is that the Apple
menu remains in the menubar even after you call (set-menubar
nil).

If you wish to create an application with its own About menu item in
the Apple menu, first remove all the menu items from the Apple menu
and then install your own. You begin with the expression
(apply #'remove-menu-items *apple-menu* (menu-items *apple-
menu*))

Don’t worry: the desk accessories won’t be removed! Once you have
done this, you can add your own menu items to the Apple menu. Any
menu items added are automatically placed above the desk accessories.
Normally, an application has one About menu item and one blank line.

The Apple menu remains installed as you work on it.

Example: A font menu

The file font-menus.lisp, distributed with Macintosh Common
Lisp and available in your MCL Examples folder, contains an example
of code implementing a font menu. You can load this file to see how it
works.
124 Macintosh Common Lisp Reference

125

Chapter 4:

Views and Windows

Contents

Views and Windows / 126
What simple views do / 126
What views do / 127
What windows do / 127
Class hierarchy of views / 128
Summary / 129
For more information / 130

MCL expressions relating to simple views and views / 130
Windows / 153

MCL functions for programming windows / 154
Advanced window features / 173

Supporting standard menu items / 178
Floating windows / 180

This chapter covers the implementation of views and windows in Macintosh
Common Lisp. Macintosh Common Lisp provides Macintosh windows and
dialog boxes as standard MCL classes. Macintosh Common Lisp also provides
facilities for you to create customized kinds of windows. The features of these
parts of the MCL system are described in this chapter.

The relationship of dialogs and dialog items to views and windows is
described in this chapter. They are defined in Chapter 5: Dialog Items and
Dialogs.

Views and Windows

To understand how Macintosh Common Lisp handles drawing and
display, it is necessary to know the relationship between the class
simple-view and its subclasses.

The Macintosh Operating System draws and displays by means of
views. Views and their subclasses provide generalized drawing
rectangles, store information about them, and display them.

■ The most generalized drawing and display class is simple-view, the
class used for all views that do not have subviews.

■ A subclass of simple-view is view, which includes all the views that
contain subviews.

■ The subclasses of view include window and its subclasses.

Windows govern the relationship of views to the screen. Before a view
can draw itself, it must be contained in a window—a screen display
mechanism. Windows cannot be contained within windows.

Until you are used to it, this relationship can be confusing. In Macintosh
Common Lisp, the class window is a subclass of view, but instances of
views are contained within instances of windows.

Views and windows are implemented this way because views provide
a more generalized behavior than windows. Views know how to draw
themselves inside any coordinate system. Windows know how to draw
themselves inside a specialized coordinate system defined by the
screen. Windows also have additional behavior to perform event
handling.

Because windows have the more specialized behavior, they are a
subclass of views.

For many purposes the relationship between views and windows is
transparent; window simply calls the method for its superclass, view.

What simple views do

Simple views have no subviews—no subordinate display objects. In
Macintosh Common Lisp, you say they contain no subviews. Thus they
can use simpler and faster drawing methods.

Simple views are drawn and clicked while focused to their container,
the view that contains them. Focusing on a view means installing the
GrafPort of view as the current GrafPort and setting the clip region and
origin so that drawing will occur in the coordinate system of view.
126 Macintosh Common Lisp Reference

For interface programming, the most important built-in subclass of
simple-view is the class of dialog items, dialog-item.

The class dialog-item is a subclass of simple-view because dialog
items have no subviews. Dialog items are drawn while focused to the
dialog box or other window in which they are contained.

(Because dialog items have many specialized subclasses and methods,
they are described in a separate place, Chapter 5: Dialog Items and
Dialogs.)

What views do

Most graphics operations are defined on views. Views and the generic
functions associated with them determine the position of the view in its
coordinate system, its font, its relationship to mouse activity, and
whether or not the view is currently being drawn in.

Views have other views contained within them: for instance, a view can
contain simple views such as radio buttons or checkboxes.

Views draw their contents relative to their own coordinate system. Each
view has its own coordinate system, with the point (0,0) in the upper-
left corner of its content area. The position of all the view’s subviews is
defined by this coordinate system.

For this reason, a view’s subviews are drawn after the view. For
example, a static-text item in a dialog box is drawn after the dialog box.

When a view draws itself inside its container, it uses the container’s
coordinate system and is clipped to the boundaries of its container. For
example, if a static-text item is too large to fit inside the boundaries of a
dialog box, only the part of the item that fits inside the dialog box is
drawn.

What windows do

Because windows are built on views, the distinction between a view
and a window is transparent for many purposes. You can simply work
with window, using both window and the view operations it inherits.

Window functions include closing a window and deallocating the
associated Macintosh data structures, positioning a window on screen,
sizing a window, showing and hiding windows, setting the layer of a
window, determining whether the window displays in color, and
ensuring that a window is on screen.
Chapter 4: Views and Windows 127

Events (such as keystrokes, presses of the mouse button, and activation
events) are usually handled by the top window and its views. Views
and windows can be redrawn, resized, activated, and so on, in response
to events.

Macintosh Common Lisp provides several subclasses of window. These
include

■ Fred windows, used by Fred, the editor. These windows have
functionality for editing text.

■ Floating windows (whose class is windoid), a special class of window
that always appears in front of other windows. Floating windows are
typically used for creating tool palettes.

■ Dialogs, in which you display information and initiate action in
structured ways. Dialog items may appear in any view or subclass of
view, not only in dialog boxes. The dialog class is preserved for
compatibility with earlier versions of Macintosh Common Lisp, but it
doesn’t exist in any functional sense.

Class hierarchy of views

Figure 4-1 shows the class hierarchy of views from simple-view
downward.

■ The class simple-view is the parent of both view and dialog-
item.

■ The class view is the subclass of simple-view that defines the
behavior of all views with subviews.

■ The class window is a subclass of view, and fred-window and
dialog (among others) are subclasses of window.

■ The class dialog is simply window with slightly different default
initial arguments, and dialog items do appear inside it exclusively; the
class window and its subclasses are usable as dialog boxes.

■ The class dialog-item is a subclass of simple-view because dialog
items do not possess subviews.

The class dialog-item itself is abstract. The subclasses of dialog-
item include button-dialog-item, fred-dialog-item, and
table-dialog-item (among others). It is these subclasses that
actually have instances.
128 Macintosh Common Lisp Reference

g-item
■ Figure 4-1 The class hierarchy of views from simple-view downward

Summary

To summarize:

■ Simple views have no subviews.

■ Views have subviews.

■ Views define graphics operations within other views.

■ Windows define screen operations.

■ Dialogs are windows with slightly different default values, good for
dialog boxes.

■ Fred windows have special methods to deal with, among other things,
the display and editing of Lisp code and text.

■ Dialog items are simple views since they have no subviews. They may
appear in any view or window. The class dialog-item is never
instantiated; only its subclasses have instances.

◆ Note: A window instance contains zero or more views (that is, it
provides facilities to display zero or more views on screen), but the
window class is a subclass of the view class.

simple-view

view dialog-item

window
is also dialog button-dialog-item table-dialog-item fred-dialo

fred-window
Chapter 4: Views and Windows 129

For more information

Dialog items and dialogs are described in Chapter 5: Dialog Items and
Dialogs.

For information on the size, resolution, and other physical
characteristics of the display, see Chapter 2: Points and Fonts .

Information on using color is given in Chapter 6: Color .

The event-related behavior of windows and views is described in
Chapter 10: Events.

Information on drawing in views with QuickDraw is given in
Appendix D: QuickDraw Graphics.

MCL expressions relating to simple views and views

The following MCL forms are used to define and program simple views
and views.

simple-view [Class name]

Description The class simple-view is the basic class of views, from which all views
inherit. A simple view does not have subviews and thus can be drawn
more easily. Views and dialog items are built on simple views.

initialize-instance [Generic function]

Syntax initialize-instance (view simple-view) &rest initargs

Description The initialize-instance primary method for simple-view
initializes a simple view so that it can be used. (When instances are
actually made, the function used is make-instance, which calls
initialize-instance.)

Arguments view A simple view.
initargs A list of keywords and values used to initialize the simple

view. The following keywords are available:
130 Macintosh Common Lisp Reference

:wptr A pointer to a window record on the Macintosh heap.
This record can be examined or passed to Macintosh traps
that take a window pointer. The value is nil if the view
is not contained in a window.

:view-position
The position of the view in its container. The default is
(view-default-position view).

:view-size
The size of the view. The default is
(view-default-size view).

:view-nick-name
The nickname of the view. This keyword is used in
conjunction with view-named. The default value is nil.

:view-font
The font specification used by the view. The default is
nil, which means that the view inherits its font from its
container.

:help-spec
A specification of a string for Balloon Help. The simplest
specification is a string. For a description of the other
possible :help-spec forms, see the file help-
manager.lisp in your MCL Examples folder.

:view-container
A view. If this argument is specified and non-nil, the
instantiation procedure calls set-view-container to
make this argument the container of the view being
instantiated.

view [Class name]

Description The view class is the class of views that can include subviews. It is built
on simple-view.

initialize-instance [Generic function]

Syntax initialize-instance (view view) &rest initargs

Description The initialize-instance primary method for view initializes a view
so that it can be used. (When you make an instance, use make-instance,
which calls initialize-instance.)

Arguments view A view.
initargs A list of keywords and values used to initialize the view.

The following keywords are available:
Chapter 4: Views and Windows 131

:wptr A pointer to a window record on the Macintosh heap.
This record can be examined or passed to Macintosh traps
that take a window pointer. The value is nil if the view
is not contained in a window.

:view-position
The position of the view in its container. The default is
#@(0 0).

:view-size
The size of the view. The default is #@(100 100).

:view-nick-name
The nickname of the view. This keyword is used in
conjunction with view-named. The default value is nil.

:view-font
The font specification used by the view. The default is
nil, which means that the view inherits its font from its
container.

:view-scroll-position
The initial scroll position of the view. This corresponds to
the origin in a Macintosh GrafPort. The default value is
#@(0 0).

:help-spec
A specification of a string for Balloon Help. The simplest
specification is a string. For a description of the other
possible :help-spec forms, see the file help-
manager.lisp in your MCL Examples folder.

:view-container
A view. If this argument is specified and non-nil, the
instantiation procedure calls set-view-container to
make this argument the container of the view being
instantiated.

:view-subviews
A list of the views that will be made subviews of view.

Example

Here is an example of a view being instantiated.
? (setf my-view (make-instance 'view

 :view-scroll-position #@(20 30)

 :view-font '("Monaco" 12)

 :view-container (setf win

 (make-instance 'window))))

#<VIEW #x43C6F1>

? (view-subviews win)

#<VIEW #x43C6F1>
132 Macintosh Common Lisp Reference

current-view [Variable]

Description The *current-view* variable is bound to the view where drawing
currently occurs. See focus-view and with-focused-view.

mouse-view [Variable]

Description The *mouse-view* variable is bound to the view that the mouse is over.
This variable is updated by the window-update-cursor generic
function.

The *mouse-view* view is the one whose view-cursor method decides
which cursor to select.

with-focused-view [Macro]

Syntax with-focused-view view {form}*

Description The with-focused-view macro executes forms with the current
GrafPort set for drawing into view. This involves setting the current
GrafPort and setting the origin and clip region so that drawing occurs in
view. When the forms exit (normally or abnormally), the old view is
restored.

Arguments view A view installed in a window, or nil. If nil, the current
GrafPort is set to an invisible GrafPort.

form Zero or more forms to be executed with the current view
set.

Example

Here is an example of using with-focused-view to paint a round-
cornered rectangle within a window window1, using the Macintosh
trap #_PaintRoundRect.
(defparameter *w* (make-instance 'window))

(rlet ((r :rect :top 20 :left 20 :bottom 80 :right 60))

 (with-focused-view *w*

 (#_paintroundrect r 30 30)))
Chapter 4: Views and Windows 133

focus-view [Generic function]

Syntax focus-view (view simple-view) &optional font-view
focus-view (view null) &optional font-view

Description The focus-view function installs the GrafPort of view as the current
GrafPort and sets the clip region and origin so that drawing will occur in
the coordinate system of view.

The focus-view function is not normally called directly. In general, with-
focused-view should be used when drawing to views.

Arguments view A view installed in a window, or nil. If nil, the current
GrafPort is set to an invisible GrafPort.

font-view A view or nil. If nil, the font is unchanged. If non-nil,
the view-font-codes of font-view are installed after the
rest of the focusing is completed. The default is nil.
(See“Implementation of font codes” on page 75 for
information on font codes.)

with-font-focused-view [Macro]

Syntax with-font-focused-view view {form}*

Description The macro with-font-focused-view focuses on the font of view, then
calls with-focused-view.

Arguments view A view installed in a window, or nil. If nil, the current
GrafPort is set to an invisible GrafPort.

form Zero or more forms to be executed with the current view
set.

Example

Stream output operations on views always use with-font-
focused-view. Hence, you need to use with-font-focused-
view explicitly only if you need to do lower-level output. Here is an
example.
(defvar *w* (make-instance 'window))

(defvar *view* (make-instance 'view

 :view-container *w*

 :view-font '("Times" 12)

 :view-size (view-size *w*)

 :view-position #@(0 0)))

(with-pstrs ((s "Hello there."))
134 Macintosh Common Lisp Reference

 (terpri *view*)

 (with-focused-view *view*

 ; This string will draw in the default font

 (#_DrawString s))

 (terpri *view*)

 (with-font-focused-view *view*

 ; This string will draw in times 12 font.

 (#_DrawString s)))

view-container [Generic function]

Syntax view-container (view view)

Description The view-container generic function returns the view’s containing
view.

Argument view A view or subview, but not a window. Instances of
window cannot have containers.

set-view-container [Generic function]

Syntax set-view-container (view view) new-container

Description The set-view-container generic function sets view’s containing view
to new-container. If view’s window is changed by giving it a new container,
remove-view-from-window is called on view and the old window, and
install-view-in-window is called on view and the new window.

Arguments view A view or subview, but not a window. Instances of
window cannot have containers. If set-view-
container is called on a window, it signals an error.

new-container The new container of the view.

install-view-in-window [Generic function]

Syntax install-view-in-window (view simple-view) window
install-view-in-window (view view) window

Description The generic function install-view-in-window installs view in the
window window.
Chapter 4: Views and Windows 135

This function performs initialization tasks that require the containing window.
It should never be called directly by user code. However, it may be shadowed.
Specialized versions of install-view-in-window should always perform
call-next-method.

Arguments view A view or subview, but not a window. Instances of
window cannot have containers.

window A window.

remove-view-from-window [Generic function]

Syntax remove-view-from-window (view simple-view)
remove-view-from-window (view view)

Description The generic function remove-view-from-window removes view from
its container. It should never be called directly by user code. However, it
may be shadowed. Specialized versions of remove-view-from-window
should dispose of any Macintosh data the item uses (that is, data not
subject to garbage collection) and should always perform a call-next-
method.

Argument view A view or subview, but not a window. Instances of
window cannot have containers.

subviews [Generic function]

Syntax subviews (view view) &optional subview-type

Description The subviews generic function returns the subviews of view. If subview-
type is present, only subviews matching that type are returned.

Arguments view A view.
subview-type A Common Lisp type specifier.

view-subviews [Generic function]

Syntax view-subviews (view view)

Description The view-subviews generic function returns a vector containing all of
the view’s subviews. This vector should never be changed directly. It is
updated automatically by calls to set-view-container.

Argument view A view.
136 Macintosh Common Lisp Reference

do-subviews [Macro]

Syntax do-subviews (subview-var view [subview-type]) {form}*

Description For each subview of view of the given subview-type, the macro do-
subviews executes form with subview-var bound to the subview.

Arguments subview-var A variable.
view A view.
subview-type A Common Lisp type specifier.
form Zero or more MCL forms.

Example

Here is how do-subviews might be used to define a method on map-
subviews for view.
? (defmethod map-subviews ((view view) function

 &optional subview-type)

 (if subview-type

 (do-subviews (subview view subview-type)

 (funcall function subview))

 (do-subviews (subview view)

 (funcall function subview))))

#<STANDARD-METHOD MAP-SUBVIEWS (VIEW T)>

map-subviews [Generic function]

Syntax map-subviews (view view) function &optional subview-type

Description For each subview of view of the given subview-type, the generic function
map-subviews calls function with the subview as its single argument.

Arguments view A view.
function A function.
subview-type A Common Lisp type specifier.

Example

Here is how map-subviews might be used to define a method on
subviews for view.
? (defmethod subviews ((view view) &optional subview-type)

 (let ((result nil))

 (flet ((f (subview) (push subview result)))

 (declare (dynamic-extent #'f))

 (map-subviews view #'f subview-type))
Chapter 4: Views and Windows 137

 (nreverse result)))

#<STANDARD-METHOD SUBVIEWS (VIEW)>

view-named [Generic function]

Syntax view-named name (view view)

Description The view-named generic function returns the first subview of view whose
nickname is name. The subviews are searched in the order in which they
were added to view.

Arguments name Any object, but usually a symbol. Nicknames are
compared using eq.

view A view.

Example

Here is an example of using view-named to find a button nicknamed
pearlie in the dialog dialog1.
? (view-named 'pearlie dialog1)

#<RADIO-BUTTON-DIALOG-ITEM #x374BA9>

find-named-sibling [Generic function]

Syntax find-named-sibling (view simple-view) name

Description The find-named-sibling generic function performs a search in view’s
container and returns the first item in the container whose nickname is
name. For example, given a dialog item view, it performs a search in the
view that is view’s container to find another item with the nickname name.
The items are searched in the order in which they were added to view’s
container.

Arguments view A simple view.
name Any object, but usually a symbol. Nicknames are

compared using eq.

Example

The generic function find-named-sibling might be implemented
as follows.
? (defmethod find-named-sibling ((view simple-view) name)

 (let ((container (view-container view)))

 (and container (view-named name container))))
138 Macintosh Common Lisp Reference

add-subviews [Generic function]

Syntax add-subviews (view view) &rest subviews

Description The add-subviews generic function sets the container of each of subviews
to view.

If any of the subviews are already owned by view, add-subviews does
nothing.

Arguments view A view.
subviews A view or simple view, but not a window; subviews must

be able to be contained within view.

Examples

This function could be defined as follows:
? (defmethod add-subviews ((view view) &rest subviews)

 (dolist (su subviews)

 (set-view-container su view)))

#<STANDARD-METHOD ADD-SUBVIEWS (VIEW)>

The following code adds a checkbox to a window, then checks to see
whether it’s there:
? (setf bim (make-instance 'window))

#<WINDOW "Untitled" #x4E42A9>

? (setf boxy (make-instance 'check-box-dialog-item))

#<CHECK-BOX-DIALOG-ITEM #x4E5249>

? (add-subviews bim boxy)

NIL

? (subviews bim)

(#<CHECK-BOX-DIALOG-ITEM #x4E5249>)

remove-subviews [Generic function]

Syntax remove-subviews (view view) &rest subviews

Description The remove-subviews generic function removes each of subviews from
view.

If a subview is not in view, an error is signaled.

Arguments view A view.
subviews A view or simple view, but not a window; subviews must

be able to be contained within view.
Chapter 4: Views and Windows 139

find-clicked-subview [Generic function]

Syntax find-clicked-subview (view simple-view) where
find-clicked-subview (view view) where
find-clicked-subview (view null) where

Description The find-clicked-subview generic function returns the subview of
view that contains the point where in its click region. The method for null
searches all windows for a subview containing where in its click region.

This function is similar to find-view-containing-point, but find-
clicked-subview calls point-in-click-region-p, and find-
view-containing-point calls view-contains-point-p. The default
method of point-in-click-region-p for views or simple views simply
calls view-contains-point-p, but users can write methods to make
views invisible to mouse clicks.

Arguments view A view or subview.
where A point in the local coordinate system of the view’s

container.

view-corners [Generic function]

Syntax view-corners (view simple-view)
view-corners (window window)

Description The view-corners method for simple-view returns two points, the
upper-left and lower-right corners of view. The method for window
returns the view size.

Arguments view A simple view or subclass of simple-view.
window A window.

Example
? (view-corners (make-instance 'view

 :view-position #@(10 20)

 :view-size #@(30 40)))

1310730

3932200

? (point-string 1310730)

"#@(10 20)"

? (point-string 3932200)

"#@(40 60)"
140 Macintosh Common Lisp Reference

invalidate-corners [Generic function]

Syntax invalidate-corners (view simple-view) topleft bottomright
&optional erase-p

Description The invalidate-corners generic function calls the Macintosh trap
#_InvalRgn on the rectangle formed by topleft and bottomright in view.

Arguments view A simple view.
topleft The upper-left corner of the rectangle to invalidate.
bottomright The lower-right corner of the rectangle to invalidate.
erase-p A value indicating whether or not to add the invalidated

rectangle to the erase region of view’s window. The
default is nil.

invalidate-view [Generic function]

Syntax invalidate-view (view simple-view) &optional erase-p
invalidate-view (view view) &optional erase-p

Description The invalidate-view generic function invalidates view by running
invalidate-corners on the region bounded by its
view-corners.

Arguments view A view or simple view.
erase-p A value indicating whether or not to add the invalidated

region to the erase region of view’s window. The default is
nil.

Example

For examples of the use of invalidate-view, see in your MCL
Examples folder the files view-example.lisp and text-edit-
dialog-item.lisp.

invalidate-region [Generic function]

Syntax invalidate-region (view simple-view) region &optional
erase-p
Chapter 4: Views and Windows 141

Description The invalidate-region generic function focuses on the view and calls
#_InvalRgn. If the value of erase-p is true, the function adds this region
to view’s window erase region; the next time window-update-event-
handler runs, it will be erased. If erase-p is nil and the window was
created with the :erase-anonymous-invalidations initarg set to
true (the default), the function adds this region to the window’s explicit
invalidation region; window-update-event-handler will not erase it.

The function invalidate-region is called by invalidate-view and
invalidate-corners, and indirectly by set-view-position, set-
view-size, and set-view-container.

Arguments view A simple view.
region The region to invalidate. The region must be a Macintosh

region handle, that is, the result of (#_NewRgn).
erase-p A value indicating whether or not to add the invalidated

view to the erase region of view’s window. The default is
nil.

validate-corners [Generic function]

Syntax validate-corners (view simple-view) topleft bottomright
validate-corners (view view) topleft bottomright

Description The validate-corners generic function erases the previous contents of
the rectangle formed by topleft and bottomright and calls #_ValidRgn on
the rectangle. It also removes the rectangle from the erase region of view’s
window

Arguments view A view or simple view.
topleft The upper-left corner of the view to invalidate.
bottomright The lower-right corner of the view to invalidate.

validate-view [Generic function]

Syntax validate-view (view simple-view)
validate-view (view view)

Description The validate-view generic function validates view by running
validate-corners on the region bounded by its view-corners.

Argument view A view or simple view.
142 Macintosh Common Lisp Reference

validate-region [Generic function]

Syntax validate-region (view simple-view) region

Description The validate-region generic function focuses on the view and calls
#_ValidRgn, removing the region from view’s window erase region and
explicit invalidation region.

Arguments view A simple view.
region A region. The region must be a Macintosh region handle,

that is, the result of (#_NewRgn).

wptr [Generic function]

Syntax wptr (view simple-view)

Description The wptr generic function holds the pointer to a window record on the
Macintosh heap. This record can be examined or the pointer passed to
Macintosh traps that require a window pointer.

This generic function returns a window pointer if the view is contained in a
window, or nil if the view is not contained in a window.

All views contained in a given window have the same wptr.

Argument view A simple view or subclass of simple-view.

Examples

Both a view and its subview have the same wptr.
? (setf bim (make-instance 'window))

#<WINDOW "Untitled" #x4E42A9>

? (setf boxy (make-instance 'check-box-dialog-item))

#<CHECK-BOX-DIALOG-ITEM #x4E5249>

? (add-subviews bim boxy)

NIL

? (wptr boxy)

#<A Mac Zone Pointer Size 156 #x2C35B4>

? (wptr bim)

#<A Mac Zone Pointer Size 156 #x2C35B4>

You can test if a view’s window has been closed by checking whether
the value of its wptr slot is nil.
? (window-close bim)

NIL
Chapter 4: Views and Windows 143

? (wptr bim)

NIL

? (wptr boxy)

NIL

view-window [Generic function]

Syntax view-window (view simple-view)

Description The view-window generic function returns the window containing view,
or nil if the view is not contained in a window. If view is a window,
view-window returns the window.

Argument view A simple view or subclass of simple-view.

Example

This code checks to determine that a simple view (a checkbox dialog
item) is contained in a window:
? (setf checkbox (make-instance 'check-box-dialog-item))

#<CHECK-BOX-DIALOG-ITEM #x4CF721>

? (setf win (make-instance 'window))

#<WINDOW "Untitled" #x4CFBE9>

? (add-subviews win checkbox)

NIL

? (view-window checkbox)

#<WINDOW "Untitled" #x4CFBE9>

view-position [Generic function]

Syntax view-position (view simple-view)

Description The view-position generic function returns the position of the view in
its container.

Argument view A view or simple view.

Example

This code returns the position of checkbox, a checkbox dialog item:
? (setf checkbox (make-instance 'check-box-dialog-item))

#<CHECK-BOX-DIALOG-ITEM #x4CF721>

? (view-position checkbox)

262148
144 Macintosh Common Lisp Reference

set-view-position [Generic function]

Syntax set-view-position (view simple-view) h &optional v

Description The set-view-position generic function sets the position of the view
in its container.

The positions are given in the container’s coordinate system.

Arguments view A view or simple view.
h The horizontal coordinate of the new position, or the

complete position (encoded as a point) if v is nil or not
supplied.

v The vertical coordinate of the new position, or nil if the
complete position is given by h.

Example

This code sets the position of checkbox, a checkbox dialog item:
? (setf checkbox (make-instance 'check-box-dialog-item))

#<CHECK-BOX-DIALOG-ITEM #x4CF721>

? (set-view-position checkbox #@(20 20))

1310740

? (point-string 1310740)

"#@(20 20)"

view-default-position [Generic function]

Syntax view-default-position (view simple-view)

Description The method of view-default-position for simple-view returns
#@(0 0). This function is called to determine the default value of the
:view-position initarg of view.

Argument view A simple view or subclass of simple-view.

view-size [Generic function]

Syntax view-size (view simple-view)

Description The view-size generic function returns the size of the view.

Argument view A simple view or subclass of simple-view.

Example
Chapter 4: Views and Windows 145

This code returns the size of checkbox, a checkbox dialog item:
? (view-size checkbox)

1048596

set-view-size [Generic function]

Syntax set-view-size (view simple-view) h &optional v

Description The set-view-size generic function sets the size of the view.

Arguments view A simple view or subclass of simple-view.
h The width of the new size, or the complete size (encoded

as an integer) if v is nil or not supplied.
v The height of the new size, or nil if the complete size is

given by h.

view-default-size [Generic function]

Syntax view-default-size (view simple-view)

Description The method of view-default-size for simple-view returns #@(100
100). This function is called to determine the default value of the :view-
size initarg of view.

Argument view A simple view or subclass of simple-view.

view-scroll-position [Generic function]

Syntax view-scroll-position (view simple-view)

Description The view-scroll-position generic function returns the current scroll
position of the view, which is the coordinate of the upper-left corner of the
view. This position corresponds to the origin of a Macintosh GrafPort.

Argument view A simple view or subclass of simple-view.

set-view-scroll-position [Generic function]

Syntax set-view-scroll-position (view view) h &optional v
scroll-visibly
146 Macintosh Common Lisp Reference

Description The generic function set-view-scroll-position sets the position of
the view’s scroll position. It is usually called in response to a mouse click
in a scroll bar. The function returns nil.

Arguments view A simple view or subclass of simple-view.
h The horizontal coordinate of the new scroll position, or

the complete scroll position (encoded as a point) if v is
nil or not supplied.

v The vertical coordinate of the new scroll position, or nil
if the complete scroll position is given by h.

scroll-visibly An argument specifying whether the scrolling is done
immediately. If true, the function calls #_ScrollRect to
do the scrolling immediately. Otherwise, the function
invalidates the view so that it is redrawn the next time
window-update-event-handler is called.

Example
? (setq foo (make-instance 'fred-window))

#<FRED-WINDOW "New" #x438D21>

? (view-scroll-position foo)

0

? (set-view-scroll-position foo 20 20)

NIL

view-nick-name [Generic function]

Syntax view-nick-name (view simple-view)
view-nick-name (view view)

Description The view-nick-name generic function returns the nickname of the view.
The nickname is used in conjunction with view-named.

Argument view A view or simple view.

set-view-nick-name [Generic function]

Syntax set-view-nick-name (view view) new-name

Description The set-view-nick-name generic function sets the nickname of the
view to new-name and returns new-name.

Arguments view A view or simple view.
new-name A name, usually a symbol or string.
Chapter 4: Views and Windows 147

find-view-containing-point [Generic function]

Syntax find-view-containing-point (view view) h &optional v
direct-subviews-only

find-view-containing-point (view null) h &optional v
direct-subviews-only

Description The generic function find-view-containing-point returns the view
containing the point specified by h and v. This may be the view or one of
its subviews.

The null method searches all windows for a view that contains the point. The
null class and its use are documented in Common Lisp: The Language, pages
780–783.

Arguments view A view.
h The horizontal coordinate of the point, or the complete

point if v is not supplied.
v The vertical coordinate of the point.
direct-subviews-only

If direct-subviews-only is nil (the default), the most
specific view is returned; subviews are searched for
subviews, and so on. If true, then only the view or one of
its direct subviews is returned.

Examples

This code determines the subview of the window win that contains the
point #@(21 21).
? (find-view-containing-point win #@(21 21))

#<CHECK-BOX-DIALOG-ITEM #x4CF721>

The following code returns the view that contains the mouse, when you
don’t know which window it’s over:
(find-view-containing-point nil (view-mouse-position nil))

view-contains-point-p [Generic function]

Syntax view-contains-point-p (view simple-view) where
view-contains-point-p (window window) where

Description The generic function view-contains-point-p returns t if view
contains where; otherwise it returns nil. The method for simple-view
takes where in the coordinates of the parent view; the method for window
uses its own coordinates..
148 Macintosh Common Lisp Reference

Arguments view A simple view or view.
window A window.
where The cursor position in the local coordinate system of the

view’s container when the mouse is clicked. If view is a
window, the cursor position in the window’s coordinate
system.

point-in-click-region-p [Generic function]

Syntax point-in-click-region-p (view simple-view) where

Description The generic function point-in-click-region-p is called by view-
click-event-handler to determine whether where is in view. The
default method calls view-contains-point-p..

Arguments view A simple view or view.
where For a view, the cursor position of the view in the local

coordinate system when the mouse is clicked. For a
simple view, the cursor position of the simple view in the
local coordinate system of the view’s container when the
mouse is clicked.

view-activate-event-handler [Generic function]

Syntax view-activate-event-handler (view simple-view)
view-activate-event-handler (view view)

Description The generic function view-activate-event-handler is called by the
event system when the window containing the view is made active.

The definition for simple-view does nothing. The definition for view calls
view-activate-event-handler on each subview. Specialize this generic
function if your view needs to indicate visually that it is active.

Argument view A simple view or view.

view-deactivate-event-handler [Generic function]

Syntax view-deactivate-event-handler (view simple-view)
view-deactivate-event-handler (view view)
Chapter 4: Views and Windows 149

Description The generic function view-deactivate-event-handler is called by
the event system to deactivate a view. It is called when the window
containing the view is active and a different window is made active.

The definition for simple-view does nothing. The definition for view calls
view-deactivate-event-handler on each subview. Specialize this
generic function if your view needs to indicate visually that it has been
deactivated.

Argument view A simple view or view.

view-click-event-handler [Generic function]

Syntax view-click-event-handler (view simple-view) where
view-click-event-handler (view view) where

Description The generic function view-click-event-handler is called by the
event system when a mouse click occurs. The simple-view method does
nothing. The view method calls view-convert-coordinates-and-
click on the first subview for which point-in-click-region-p
returns t.

The function view-click-event-handler scans subviews in the opposite
order as does view-draw-contents. The first view added is the first one
drawn but the last one to be queried during clicking.

If you define any view-click-event-handler methods for window, they
must call call-next-method.

Arguments view A simple view or view.
where For a view, the mouse click position (the position when

the mouse is clicked) of the view in the local coordinate
system. For a simple view, the mouse click position of the
simple view in the local coordinate system of the view’s
container.

Example

This function might be defined as follows, except that it does not do any
consing:
? (defmethod view-click-event-handler-1 ((view view) where)

 (dolist (subview (nreverse (subviews view)) view)

 (if (point-in-click-region-p subview where)

 (return

 (view-convert-coordinates-and-click

 subview where view)))))

#<STANDARD-METHOD VIEW-CLICK-EVENT-HANDLER-1 (VIEW T)>
150 Macintosh Common Lisp Reference

For further examples, see the files grapher.lisp, shapes-
code.lisp, thermometer.lisp, and view-example.lisp in
your MCL Examples folder.

view-convert-coordinates-and-click [Generic function]

Syntax view-convert-coordinates-and-click (view simple-view)
where container

view-convert-coordinates-and-click (view view) where
container

Description The generic function view-convert-coordinates-and-click runs
view-click-event-handler on the cursor position within the view’s
container.

Arguments view A simple view or view.
where For a view, the mouse click position (the position when

the mouse is clicked) of the view in the local coordinate
system. For a simple view, the mouse click position of the
simple view in the local coordinate system of the view’s
container.

container The view’s container.

view-draw-contents [Generic function]

Syntax view-draw-contents (view simple-view)
view-draw-contents (view view)

Description The generic function view-draw-contents is called by the event
system whenever a view needs to redraw any portion of its contents.

The default simple-view method does nothing. It should be shadowed by
views that need to redraw their contents. The default view method calls
view-focus-and-draw-contents on each of the view’s subviews.

When view-draw-contents is called by the event system, the view’s clip
region is set so that drawing occurs only in the portions that need to be
updated. This normally includes areas that have been covered by other
windows and then uncovered.

Argument view A simple view or view.
Chapter 4: Views and Windows 151

view-focus-and-draw-contents [Generic function]

Syntax view-focus-and-draw-contents (view simple-view)
&optional visrgn cliprgn

view-focus-and-draw-contents (view view) &optional visrgn
cliprgn

Description The generic function view-focus-and-draw-contents is used
whenever a view needs to be focused on before any portion of its contents
is redrawn. The method for view focuses on the view, then calls view-
draw-contents if the visrgn and cliprgn region records overlap. The
method for simple-view focuses on the view’s container, then calls
view-draw-contents.

Arguments view A simple view or view.
visrgn, cliprgn Region records from the view’s wptr.

Example

The method of view-focus-and-draw-contents for simple-
view shows the use of the region record arguments.
(defmethod view-focus-and-draw-contents

 ((view simple-view) &optional visrgn cliprgn)

 (with-focused-view (view-container view)

 (when (regions-overlap-p visrgn cliprgn)

 (view-draw-contents view))))

The function regions-overlap-p takes two arguments, which must
be pointers to Macintosh regions as returned by (#_NewRgn). It
returns true if they have a nonempty intersection and nil if they do
not.

convert-coordinates [Function]

Syntax convert-coordinates point source-view destination-view

Description The convert-coordinates function converts point from the coordinate
system of source-view to the coordinate system of destination-view.

The source view and destination view should be in the same view hierarchy
(that is, they should have a common container, or one should be contained in
the other).

Arguments point A point, encoded as an integer.
source-view A view in whose coordinate system point is given.
152 Macintosh Common Lisp Reference

destination-view
A view in whose coordinate system the return point is
given.

Example

Here is a way of defining view-convert-coordinates-and-
click by means of convert-coordinates.
? (defmethod view-convert-coordinates-and-click

 ((view view) where container)

 (view-click-event-handler view

 (convert-coordinates where container view)))

#<STANDARD-METHOD VIEW-CONVERT-COORDINATES-AND-CLICK (VIEW T
T)>

Windows

Windows are a subclass of view. Their behavior is specialized on that
of view, and they inherit slots from view. Windows may contain
subviews, but a window cannot be a subview. (If they could, windows
would attempt to display inside windows, and that is wrong: windows
display views.)

Windows are used to display information on the screen. Because
windows are views, graphics operations can also be performed on
them. For many applications, the distinction between a window and a
view is insignificant and you don’t need to worry about views at all.
You can simply work with windows, using both window and view
operations.

The base class of windows is window. The features of window are
common to all windows.

Macintosh Common Lisp also provides several subclasses of window.
These include

■ fred-window, a subclass of windows used for text editing. The
functionality of Fred windows is discussed in Chapter 14:
Programming the Editor.

■ windoid, the class of floating windows. Floating windows always
appear in front of other windows. You generally use them to create tool
palettes. They are described in “Floating windows” on page 180.
Chapter 4: Views and Windows 153

■ dialog. The dialog class exists for convenience. It is a subclass of the
window class and is identical except that its default window type is
:document instead of :document-with-zoom, its default title is
"Untitled Dialog" instead of "Untitled", its default size is
#@(300 200) instead of *window-default-size*, and its default
position is '(:top 100) instead of *window-default-
position*.

You do not need to use the dialog class. You can use any window to
create a dialog box, and dialog items can appear in any window.

Dialogs are described in Chapter 5: Dialog Items and Dialogs.

MCL functions for programming windows

The following MCL functions are used for creating, reporting on, and
modifying windows.

window [Class name]

Description The class window is the class of windows, built on view.

initialize-instance [Generic function]

Syntax initialize-instance (window window) &rest initargs

Description The initialize-instance primary method for window initializes a
window so that it can be used. (You make an instance with make-
instance, which calls initialize-instance.)

Arguments window A window.
initargs A list of keywords and values used to initialize the

window. The following keywords are available:
:view-position

A point, keyword, or list giving the initial position of the
window. The default is the result of calling view-
default-position on the window. For a description
of the list form of view-position, see the generic
function set-view-position later in this section.
154 Macintosh Common Lisp Reference

:auto-position
A keyword or nil, indicating an automatically
calculated position for the window. These keywords
correspond to the WIND and DLOG resource codes with
the same names.
nil (same as :noAutoCenter)
:noAutoCenter
:alertPositionParentWindow
:centerMainScreen
:staggerParentWindow
:alertPositionMainScreen
:centerParentWindowScreen
:staggerMainScreen
:alertPositionParentWindowScreen
:centerParentWindow
:staggerParentWindowScreen.

:view-size
A point giving the initial size of the window. The default
is the result of calling view-default-size on the
window.

:view-nick-name
The nickname of the view. This keyword is used in
conjunction with view-named. The default value is nil.

:view-scroll-position
The initial scroll position of the view. This corresponds to
the origin in a Macintosh GrafPort. The default value is
#@(0 0).

:view-subviews
A list of initial subviews for the window.

:window-title
A string specifying the title of the window. The default is
"Untitled".

:window-show
If this argument is true (the default), a window is shown
when it is created. If nil, the window is created invisibly.
See window-show and window-hide.

:view-font
The font specification used by the window. The default is
the result of calling view-default-font on the
window.

:window-layer
An integer describing the layer in which the new window
will be created. By default this is 0 (the front window).
For details, see set-window-layer, later in this section.

:color-p If nil (the default), the window is a normal window
created by the #_newWindow trap. If non-nil, the
window is a color window, created by the
#_newCWindow trap.
Chapter 4: Views and Windows 155

:window-type
A keyword describing the type of window to be created.
The default is :document-with-zoom. This argument
should be one of the following keywords:
:document
:document-with-grow
:document-with-zoom
:double-edge-box
:single-edge-box
:shadow-edge-box
:tool

:procid A number indicating the window definition ID (procID)
of the window to be created. This is an alternative to
specifying :window-type, for programmers who want
to use window definitions with nonstandard IDs.

:window-do-first-click
A Boolean value determining whether the click that
selects a window is also passed to window-click-
event-handler. The default value is nil.
The click that selects an application in Multifinder is not
passed to the application unless either the window
clicked on is not the front window or the Get Front Clicks
bit is set in the application’s size resource.

:close-box-p
A Boolean value determining whether the window will
have a close box. Close boxes aren’t available on all
windows.

:wptr For use by advanced programmers, an argument used as
a pointer to a window record on the Macintosh heap.
Instead of creating a new window, initialize-
instance builds a window object around the window
specified by :wptr. This is useful when you want to
create the window yourself and integrate it with the MCL
window object system.
156 Macintosh Common Lisp Reference

:erase-anonymous-invalidations
An argument determining behavior when window is
refreshed. If the value of this initialization argument is
true (the default), any parts of the invalid region of
window that were not added by invalidate-region
are erased when window is refreshed. If this value is nil,
no extra erasing is done. Since erasing draws the
background color and background pattern, and since
anonymous invalidation usually happens only because a
formerly covered part of the window is exposed, you
usually should use the default. (The function
invalidate-region is called by invalidate-view
and invalidate-corners, and indirectly by
set-view-position, set-view-size, and
set-view-container.) If your code invalidates parts
of a window without calling invalidate-region, for
example, by calling #_InvalRgn, you may notice
flickering on redraw if you use the default value of
:erase-anonymous-invalidations.

Example

Here is an example of instantiating a window.
? (setq baz (make-instance 'window
 :window-title "Bazwin"
 :view-position #@(200 300)
 :window-type :tool

 :color-p t))
#<WINDOW "Bazwin" #x5DB8C9>

windows [Function]

Syntax windows &key :class :include-invisibles :include-
windoids

Description The windows function returns a list of existing windows that are instances
of :class. The list is ordered from front to back.

Arguments :class A class used to filter output. Only windows that match
the value of :class are included in the returned list. The
default is window, which includes all windows.

:include-invisibles
If the value of this variable is true, invisible windows are
included in the list. If false (the default), invisible
windows are not included.
Chapter 4: Views and Windows 157

:include-windoids
If the value of this variable is true, floating windows (the
class windoid) are included in the list. If false (the
default), floating windows are not included. Floating
windows are also included if the value of the :class
argument is windoid.

Examples

Here are some examples of the use of windows.
? (windows)

(#<LISTENER "Listener" #x49EB31>

 #<APROPOS-DIALOG "Apropos" #x532EF1>

 #<FRED-WINDOW "New" #x51CC61>)

? (windows :class 'fred-window)

(#<LISTENER "Listener" #x49EB31>

 #<FRED-WINDOW "New" #x51CC61>)

? (windows :class 'apropos-dialog)

(#<APROPOS-DIALOG "Apropos" #x532EF1>)

front-window [Function]

Syntax front-window &key :class :include-invisibles
:include-windoids

Description The front-window function returns the frontmost window satisfying the
arguments. If no windows satisfy the tests, nil is returned.

Arguments :class A class used to filter output. The frontmost window that
is an instance of the value of :class is returned. The
default is window, which includes all windows.

:include-invisibles
If the value of this variable is true, the frontmost window,
visible or invisible, is returned. If false (the default), the
frontmost visible window is returned.

:include-windoids
If the value of this variable is true, the frontmost window
or floating window is returned. If false (the default), the
frontmost window that is not a floating window is
returned.

Example
? (front-window)

#<LISTENER "Listener" #x5204C9>
158 Macintosh Common Lisp Reference

target [Function]

Syntax target

Description The target function returns the second window on the list of windows;
it is equivalent to (second (windows)).

Example
? (windows)

(#<LISTENER "Listener" #x49EB31>

 #<APROPOS-DIALOG "Apropos" #x532EF1>

 #<FRED-WINDOW "New" #x51CC61>)

? (target)

 #<APROPOS-DIALOG "Apropos" #x532EF1>

map-windows [Function]

Syntax map-windows function &key :class :include-invisibles
:include-windoids

Description The map-windows function calls function, a function of one argument, on
each window that satisfies the keywords.

Arguments function A function of one argument.
:class A class used to filter output. The function function is

called only on windows that match the value of :class.
The default is window, which includes all windows.

:include-invisibles
If the value of this variable is true, function is applied to
both visible and invisible windows that are instances of
:class. If the value is false, function is applied only to
visible windows.

:include-windoids
If the value of this variable is true, function is applied to
floating windows. If the value is false, it is not.

Example

The following code provides a simple way to implement front-
window using map-windows:
? (defun simple-front-window

 ()

 (let ((f #'(lambda (w)

 (return-from simple-front-window w))))
Chapter 4: Views and Windows 159

 (declare (dynamic-extent f))

 (map-windows f)))

SIMPLE-FRONT-WINDOW

find-window [Function]

Syntax find-window title &optional class

Description The find-window function returns the frontmost window of the class
class for which a prefix of the window’s title is string-equal to title. If
no window has title as its title, nil is returned. (The cross that appears in
the title bar of modified Fred windows is ignored when comparing the
title.)

Arguments title A string specifying the title of the window to search for.
class A class used to filter the result. The frontmost window

that inherits from class is returned. The default is window.

Example
? (find-window "Listener")

#<LISTENER "Listener" #x5204C9>

? (find-window 'listener)

#<LISTENER "Listener" #x5204C9>

? (find-window "lis")

#<LISTENER "Listener" #x5204C9>

? (find-window "ist")

NIL

window-close [Generic function]

Syntax window-close (window window)

Description The window-close generic function closes the window. The associated
Macintosh data structures will be deallocated the next time the garbage
collector runs. This operation is the inverse of initialize-instance.
When a window is closed, its state is lost and cannot be recovered.

The MCL event system calls window-close when the user clicks a window’s
close box or chooses Close from the File menu.

Argument window A window.

Example
160 Macintosh Common Lisp Reference

You can tell if a window has been closed by determining whether wptr
called on the window returns nil.
? (setq baz (make-instance 'window

 :window-title "bazwin"))

#<WINDOW "bazwin" #x6143D1>

? (window-title baz)

"Bazwin"

? (wptr baz)

#<A Mac Zone Pointer Size 156 #x715930>

? (window-close baz)

NIL
? (window-title baz)

"<No title>";the window's state is lost

? (wptr baz)

NIL

view-position [Generic function]

Syntax view-position (window window)

Description The view-position generic function returns the position of the upper-
left corner of the window as a point.

Argument window A window.

set-view-position [Generic function]

Syntax set-view-position (window window) h &optional v

Description The set-view-position generic function moves the window and
returns the new position of the upper-left corner, expressed as a point.

For windows with title bars, such as document windows and tool windows,
the position is not the upper-left corner of the title bar but the upper-left corner
of the content area of the window.

Arguments window A window.
h The horizontal coordinate of the new position, or the

complete position.
This may also be a keyword or list specifying how to
center the window.
Chapter 4: Views and Windows 161

To center a window, specify the new position as the
keyword :centered. If the position is :centered, the
window will be centered vertically and horizontally.
The position may also be a list of the form (reference
offset), where reference is one of the keywords :top,
:left, :bottom, or :right, and offset is a number.

n If reference is :top, the top of the window is offset
offset number of pixels from the top of the screen,
and the window is centered horizontally.

n If reference is :bottom, the bottom of the window is
offset offset number of pixels from the bottom of the
screen, and the window is centered horizontally.

n If reference is :left, the left side of the window is
offset offset number of pixels from the left of the
screen, and the window is centered vertically.

n If reference is :right, the right side of the window
is offset offset number of pixels from the right of the
screen, and the window is centered vertically.

v The vertical coordinate of the new position, or nil if the
complete position is given by h.

Examples
? (setq bim (make-instance 'window
 :view-position #@(50 50)))
#<WINDOW "Untitled" #x506829>
? (point-string (view-position bim))

"#@(50 50)"

? (set-view-position bim #@(100 100))

6553700

? (point-string (view-position bim))

"#@(100 100)"

Here is an example of the use of :centered.
? (setq bim (make-instance 'window

 :view-position :centered))

#<WINDOW "Untitled" #x509F59>

view-size [Generic function]

Syntax view-size (window window)

Description The view-size generic function returns returns the size of the window
as a point.
162 Macintosh Common Lisp Reference

Argument window A window.

set-view-size [Generic function]

Syntax set-view-size (window window) h &optional v

Description The set-view-size generic function sets the size of the window.

The upper-left corner of the window is anchored, and the lower-right corner
moves according to the new size. If both h and v are given, they should be the
new horizontal and vertical dimensions of the window. If the value of v is nil
or not supplied, h is taken to be an encoded point holding both dimensions.

The new size is returned, expressed as a point.

Arguments window A window.
h The new width of the window, or both the width and

height (encoded as an integer point) if the value of v is
nil.

v The new height of the window, or nil if the height and
width are both given by h.

window-size-parts [Generic function]

Syntax window-size-parts (window window)
window-size-parts :before (window window)

Description The window-size-parts generic function can be specialized to resize
the subviews of a window whenever the size of the window is changed.
This function is called directly or indirectly by the methods specialized on
window for the generic functions initialize-instance, set-view-
size, window-zoom-event-handler, and window-grow-event-
handler.

The primary method for window does nothing. The :before method for
window ensures that the view-clip-region and view-origin of each of
the window’s subviews are recomputed the next time they are needed. The
method for fred-window resizes the horizontal and vertical scroll bars as
well as the main text area of the window.

Argument window A window or Fred window.
Chapter 4: Views and Windows 163

window-default-position [Variable]

Description The default position of a newly opened window. The initial value is #@(6
44).

window-default-size [Variable]

Description The default size of a newly opened window. The initial value is #@(502
150).

view-default-position [Generic function]

Syntax view-default-position (window window)

Description When a window is created, the view-default-position generic
function is called if no position is explicitly specified either as the :view-
position initialization argument to make-instance or as a default
initialization argument in the class definition. The value returned is used
as the initial position of the window. It must be a valid position specifier,
either a point or a centering specifier as documented under set-view-
position. The system-supplied method specialized on window returns
the value of *window-default-position*.

Argument window A window.

view-default-size [Generic function]

Syntax view-default-size (window window)

Description When a window is created, the view-default-size generic function is
called if no size is explicitly specified either as the :view-size
initialization argument to make-instance or as a default initialization
argument in the class definition. The value returned is used as the initial
size of the window. It must be a point. The system-supplied method
specialized on window returns the value of *window-default-size*.

Argument window A window.
164 Macintosh Common Lisp Reference

window-title [Generic function]

Syntax window-title (window window)
window-title (window fred-window)

Description The window-title generic function returns the window title as a string.
It ignores the crosses in the title bars of modified Fred windows.

Argument window A window.

set-window-title [Generic function]

Syntax set-window-title (window window) new-title
set-window-title (window fred-window) new-title

Description The set-window-title generic function sets the window title to new-
title. It ignores the crosses in the title bars of modified Fred windows.

Arguments window A window.
new-title A string to be used as the new title.

view-font [Generic function]

Syntax view-font (window window)
view-font (window fred-window)
view-font (window listener)

Description The view-font generic function returns the font spec used for drawing
text in the window. Due to an idiosyncrasy of the Macintosh computer, a
font size of 0 points may appear as a font size of 12 points.

For the Listener, view-font changes :bold to :plain in the result of call-
next-method.

For Fred windows, view-font returns three values: the current font for
newly inserted characters; the font of the first character after the insertion
point, or of the first character in the selection if there is a selection; and a
Boolean value specifying whether all the selected text is in the same font as the
current font.

Argument window A window, Fred window, or Listener window.
Chapter 4: Views and Windows 165

view-default-font [Generic function]

Syntax view-default-font (window window)
view-default-font (view simple-view)
view-default-font (window listener)

Description If a :view-font initialization argument is not specified when a view is
created, the generic function view-default-font is called to determine
its font.

The window method on view-default-font returns the value of *fred-
default-font-spec*. The listener method returns the value of
listener-default-font-spec. The initial value of both these variables
is ("Monaco" 9 :PLAIN). The simple-view method returns nil,
meaning that the view inherits its font from its container.

Every window has a font spec associated with it, even if the window never
uses fonts.

Arguments window A window.
view A simple view.

set-view-font [Generic function]

Syntax set-view-font (window window) font-spec
set-view-font (window fred-window) font-spec
set-view-font (window listener) font-spec

Description The set-view-font generic function sets the font spec of window to font-
spec.

Arguments window A window.
font-spec A font specifier. If font-spec doesn’t specify all four

components of a font spec, the missing components are
taken from the window’s current font. (See Chapter 2:
Points and Fonts for a complete description of font specs.)

Example

Here is an example of setting a window font.
? (setf freddy (make-instance 'fred-window))

#<FRED-WINDOW "New" #x4A20A1>

? (view-font freddy)

("Monaco" 9 :SRCOR :PLAIN)

NIL

NIL

? (set-view-font freddy '(:bold 14))

(:BOLD 14)
166 Macintosh Common Lisp Reference

? (view-font freddy)

("Monaco" 14 :SRCOR :BOLD)

NIL

NIL

For another example of the use of set-view-font, see the file font-
menus.lisp in your MCL Examples folder.

view-font-codes [Generic function]

Syntax view-font-codes (view simple-view)
view-font-codes (window window)

Description The view-font-codes generic function returns two values, the font-face
code and mode-size code for view’s font. (Font codes are a more efficient
way of encoding font specs; they are described in Inside Macintosh.)

Arguments view A simple view.
window A window.

Example
? (setq w (make-instance 'window

 :view-font '("New York" 10 :bold)))

#<WINDOW "Untitled" #xDB5B39>

? (view-font w)

("New York" 10 :SRCOR :BOLD)

? (view-font-codes w)

131328

65546

? (font-spec 131328 65546)

("New York" 10 :SRCOR :BOLD)

set-view-font-codes [Generic function]

Syntax set-view-font-codes (view simple-view) ff ms &optional
ff-mask ms-mask

set-view-font-codes (window window) ff ms &optional
ff-mask ms-mask

Description The set-view-font-codes generic function changes the view font
codes of view. The font-face code is changed only in the bits that are set in
ff-mask. The mode-size code is changed only in the bits that are set in ms-
mask. These masks default to passing all bits of ff and ms.
Chapter 4: Views and Windows 167

For full details of font codes, see Inside Macintosh.

Arguments view A simple view.
window A window.
ff The font-face code. A font-face code is a 32-bit integer that

stores the encoded name of the font and its face (plain,
bold, italic, and so on). If there is no ff, the value of ff is set
to 0.

ms The mode-size code. A mode-size code is a 32-bit integer
that indicates the font mode (inclusive-or, exclusive-or,
complemented, and so on) and the font size. If there is no
ms, the value of ms is set to 0.

ff-mask A mask that allows set-view-font-codes to look
only at certain bits of the font-face integer. Only windows
use ff-mask; views ignore it.

ms-mask A mask that allows set-view-font-codes to look
only at certain bits of the mode-size integer. Only
windows use ms-mask; views ignore it.

Example
? (font-codes '("Geneva" 9))

196608

65545

-65536

65535

? (font-spec 196608 65545)

("Geneva" 9 :SRCOR :PLAIN)

? (set-view-font-codes w 196608 65545 -65536 65535)

NIL

? (view-font w)

("Geneva" 9 :SRCOR :BOLD)

? (set-view-font-codes w 196608 65545)

NIL

? (view-font w)

("Geneva" 9 :SRCOR :PLAIN)

part-color [Generic function]

Syntax part-color (window window) part

Description The part-color generic function returns the color of the part of the
window indicated by part.

Arguments window A window.
168 Macintosh Common Lisp Reference

part A keyword specifying which part of the window should
be set. The five possible keywords have the following
meanings:

:content The frames of :double-edge-box windows; unused in
other windows.

:frame The outline of the window and the title bar of :tool
windows.

:text The title of :document windows.
:hilite The lines in the title bar of :document windows.
:title-bar

The background of the title bar in :document windows
and the title in :tool windows.

set-part-color [Generic function]

Syntax set-part-color (window window) part color

Description The set-part-color generic function sets the part of the window
indicated by part to color and returns color, encoded as an integer. If color is
nil, the default color is restored.

Arguments window A window.
part A keyword specifying a part of the window whose color

should be returned. The same are allowed as for part-
color.

color A color, either symbolic or encoded as an integer.

Example
? (setf fred (make-instance 'fred-window))

#<FRED-WINDOW "New" #x4B4C79>

? (set-part-color fred :content *red-color*)

14485510

? (set-part-color fred :frame 2078484)

2078484

part-color-list [Generic function]

Syntax part-color-list (window window)

Description The part-color-list generic function returns a property list of
keywords and colors for all the colored components of the window. The
same keywords apply as for part-color. Components whose color has
not been set are not included.
Chapter 4: Views and Windows 169

Argument window A window.

Example
? (part-color-list fred)

(:FRAME 2078484 :CONTENT 14485510)

window-show [Generic function]

Syntax window-show (window window)

Description The window-show generic function makes a window visible on the screen
(assuming the window is not at an off-screen position).

Argument window A window.

window-hide [Generic function]

Syntax window-hide (window window)

Description The window-hide generic function makes a window invisible on the
screen.

Argument window A window.

window-shown-p [Generic function]

Syntax window-shown-p (window window)

Description The window-shown-p generic function returns true if the window is
visible, and false if it is hidden.

Argument window A window.

window-ensure-on-screen [Generic function]

Syntax window-ensure-on-screen (window window) &optional default-
position default-size
170 Macintosh Common Lisp Reference

Description The generic function window-ensure-on-screen ensures that the
window is entirely visible on one or more of the Macintosh screens. It may
overlap two screens, but if it is not entirely visible, as determined by
window-on-screen-p, it is moved to the position default-position. If it is
still not entirely visible, its size is changed to default-size.

This function is useful when window positions are saved and restored on
Macintosh computers with different screen configurations.

If you hold down the shift key while selecting a window from the Windows
menu, window-ensure-on-screen is called on it.

Arguments window A window.
default-position

The position to which the window is moved if it needs to
be. The default default-position is the value of *window-
default-position*.

default-size The default size of the window. The default default-size is
the value of *window-default-size*.

window-on-screen-p [Generic function]

Syntax window-on-screen-p (window window)

Description The window-on-screen-p generic function returns t if all of window is
on the screen, nil otherwise.

Argument window A window.

window-active-p [Generic function]

Syntax window-active-p (window window)

Description The window-active-p generic function returns t if window is the active
window, nil otherwise.

Except when Macintosh Common Lisp is not the active application, it returns
t for all floating windows and for the frontmost non-floating visible window.

Argument window A window.

window-layer [Generic function]

Syntax window-layer (window window) &optional include-invisibles
Chapter 4: Views and Windows 171

Description The window-layer generic function returns the number of windows in
front of window. Floating windows are counted.

Arguments window A window.
include-invisibles

A Boolean value specifying whether or not to include
invisible windows in the count. The default value is nil,
indicating that window-layer counts only visible
windows.

set-window-layer [Generic function]

Syntax set-window-layer (window window) new-layer &optional include-
invisibles
set-window-layer (window windoid) new-layer &optional include-
invisibles

Description The set-window-layer generic function changes the layer of the
window to new-layer. Floating windows are counted.

To make a window the frontmost window that is not a floating window, set its
layer to *windoid-count*.

You can use set-window-layer to move a regular window in front of a
floating window. Once other events occur, however, the floating window
moves back to the front.

Arguments window A window.
windoid A floating window.
new-layer A nonnegative integer indicating how many windows

should be in front of window. If new-layer is equal to or
greater than the number of windows on screen, window is
moved all the way to the back. If the value of new-layer is
0, window is moved to the front.

include-invisibles
A variable specifying whether the layering should take
invisible windows into account. If the value of include-
invisibles is false (the default), invisible windows are
ignored. If it is true, invisible windows are counted.

window-select [Generic function]

Syntax window-select (window window)
window-select (window windoid)
window-select (window null)
172 Macintosh Common Lisp Reference

Description The window-select generic function brings a window to the front,
activates it, and shows it if it is hidden. The previously active window is
deactivated.

Argument window A window.

Advanced window features

The following operations are useful for advanced programmers
working with windows.

window-zoom-position [Generic function]

Syntax window-zoom-position (window window)

Description The window-zoom-position generic function returns the zoom
position of a window, that is, its position after the user clicks the zoom box.
This value is either the last value given to set-window-zoom-
position for window or the value returned by calling window-
default-zoom-position on window.

Argument window A window.

window-default-zoom-position [Generic function]

Syntax window-default-zoom-position (window window)

Description The window-default-zoom-position generic function determines
the default zoom position of a window, that is, its new position after the
user clicks the zoom box.

Argument window A window.

Example

See the example under the definition of set-window-zoom-
position.
Chapter 4: Views and Windows 173

window-default-zoom-position [Variable]

Description The *window-default-zoom-position* variable stores the default
zoom position of a window, that is, its new position after the user clicks
the zoom box.

This variable and *window-default-zoom-size* are initialized at startup
to make a zoomed window fill the screen containing the menu bar with a 3-
pixel border all around.

set-window-zoom-position [Generic function]

Syntax set-window-zoom-position (window window) h &optional v

Description The set-window-zoom-position generic function sets the zoom
position of a window, that is, its new position after the user clicks the
zoom box, and returns the new position, encoded as an integer.

Arguments window A window.
h The horizontal coordinate of the new position, or the

complete position (encoded as an integer) if v is nil or
not supplied.

v The vertical coordinate of the new position, or nil if the
complete position is given by h.

Example

Here is an example of setting the zoom position of a class of windows
and of an instance.
? (defclass my-window-class (window) ())

#<STANDARD-CLASS MY-WINDOW-CLASS>

? (defmethod window-default-zoom-position

 ((w my-window-class))

 #@(10 50))

#<STANDARD-METHOD WINDOW-DEFAULT-ZOOM-POSITION (MY-WINDOW-
CLASS)>

? (defvar *w* (make-instance 'my-window-class))

W

? (set-window-zoom-position *w* #@(20 60))

3932180
174 Macintosh Common Lisp Reference

window-zoom-size [Generic function]

Syntax window-zoom-size (window window)

Description The window-zoom-size generic function returns the zoom size of a
window, that is, its size after the user clicks the zoom box. This value is
either the last value given to set-window-zoom-size for window or the
value returned by calling window-default-zoom-size on window.

Argument window A window.

window-default-zoom-size [Generic function]

Syntax window-default-zoom-size (window window)

Description The generic function window-default-zoom-size determines the
default zoom size of a window, that is, its new size after the user clicks the
zoom box. The provided method returns the value of *window-
default-zoom-size*.

Argument window A window.

window-default-zoom-size [Variable]

Description The *window-default-zoom-size* variable stores the default zoom
size of a window, that is, its new size after the user clicks the zoom box.

This variable and *window-default-zoom-position* are initialized at
startup to make a zoomed window fill the screen containing the menu bar with
a 3-pixel border all around.

set-window-zoom-size [Generic function]

Syntax set-window-zoom-size (window window) h &optional v

Description The generic function set-window-zoom-size sets the zoom size of a
window, that is, its new size after the user clicks the zoom box, and returns
the new size, encoded as an integer.

Arguments window A window.
Chapter 4: Views and Windows 175

h The horizontal coordinate of the new position, or the
complete position (encoded as an integer) if v is nil or
not supplied.

v The vertical coordinate of the new position, or nil if the
complete position is given by h.

window-grow-rect [Generic function]

Syntax window-grow-rect (window window)

Description The window-grow-rect generic function returns a rectangle record
whose upper-left and lower-right components determine the minimum
and maximum sizes to which window can be resized with the mouse.

The window can still assume other sizes when the user clicks the zoom box,
and other sizes can be set with the function set-view-size.

Argument window A window.

Example
(let ((r (window-grow-rect (target))))

 (format t "(~S, ~S) (~S, ~S)"

 (pref r :rect.top)

 (pref r :rect.left)

 (pref r :rect.bottom)

 (pref r :rect.right)))

window-drag-rect [Generic function]

Syntax window-drag-rect (window window)

Description The window-drag-rect generic function returns a rectangle record
whose value constrains how window can be moved with the mouse.
Whenever the pointer moves outside this rectangle, the gray window
outline disappears, indicating that the user is out of bounds.

Argument window A window.

view-cursor [Generic function]

Syntax view-cursor (view simple-view) point
view-cursor (window window) point
176 Macintosh Common Lisp Reference

Description The view-cursor generic function returns the cursor shape to display
when the mouse is at point, a point in view. It is called by window-
update-cursor as part of the default window-null-event-handler.

Specialize the view-cursor generic function to change your view’s cursor to
one of the following predefined cursors or to a user-defined cursor.

arrow-cursor
The standard north-northwest arrow cursor.

i-beam-cursor
The I-beam shape used when the cursor is over an area of
editable text.

watch-cursor
The watch-face shape shown during time-consuming
operations, when event processing is disabled.

Arguments view A simple view.
window A window.
point The position of the cursor, expressed as a point.

window-cursor [Generic function]

Syntax window-cursor (window window)

Description The window-cursor generic function returns the current cursor of
window. The system-supplied view-cursor method for window calls
window-cursor to determine the cursor of window.

Argument window A window.

window-object [Function]

Syntax window-object wptr

Description The window-object function returns the window object pointed at by
wptr.

Argument wptr A macptr to a window record..

Example
? (window-object (wptr (target)))
#<FRED-WINDOW "New" #x454909>
Chapter 4: Views and Windows 177

with-port [Macro]

Syntax with-port grafport {form}*

Description The with-port macro executes form with grafport as the current GrafPort.
Upon exit, the previously current GrafPort is restored. The form is
executed within the special form without-interrupts.

This macro is a very low-level way of binding the QuickDraw GrafPort. It is
not recommended for general use; instead use with-focused-view.

Arguments grafport A GrafPort, usually the wptr of a window.
form Zero or more Lisp forms to be executed with the GrafPort

set to grafport. These usually include direct calls to
QuickDraw routines.

Supporting standard menu items

Many of the menu items in the default MCL menu bar operate on the
top window. These menu items are instances of the class window-
menu-item. (See Chapter 3: Menus.) These commands can work in
any window if the class of the window has an appropriate method.

The menu items and their corresponding functions are as follows:

Close window-close
Save window-save
Save As… window-save-as
Save Copy As… window-save-copy-as
Revert window-revert
Print… window-hardcopy
Undo undo
Undo More undo-more
Cut cut
Copy copy
Paste paste
Clear clear
Select All select-all
Execute Selection window-eval-selection
Execute Buffer window-eval-buffer
List Definitions window-defs-dialog
178 Macintosh Common Lisp Reference

If the class of the active window has a method definition for one of these
functions, then the corresponding menu item is enabled. If the user
chooses the menu item, the function is called on the active window.
Enabling of items on the Edit menu is controlled by the generic function
window-can-do-operation, described later in this section.

window-needs-saving-p [Generic function]

Syntax window-needs-saving-p (window window)

Description The window-needs-saving-p generic function determines whether the
Save menu item in the File menu should be enabled for windows that have
a definition of window-save.

The Save menu item is enabled if the class of the active window has a method
definition for window-save, unless the window has a method definition for
window-needs-saving-p and a call to window-needs-saving-p returns
nil. If the window has a method definition for window-needs-saving-p,
then Save is enabled only if a call to window-needs-saving-p returns true.

Argument window A window.

window-can-do-operation [Generic function]

Syntax window-can-do-operation (view fred-mixin) operation &optional
menu-item

window-can-do-operation (window window) operation &optional
menu-item

Description The window-can-do-operation generic function returns a Boolean
value indicating whether view can perform operation. (This is a more
general replacement for the older MCL function window-can-undo-p,
which could check only for Undo.) If the value returned is true, the menu
item for operation is enabled; otherwise, it is disabled.

The window-can-do-operation method for window returns t if there is a
method for operation defined for the class of window that is more specific than
the built-in method defined for the class window. Otherwise window-can-
do-operation returns the result of calling window-can-do-operation
on the current key handler of window, if there is one. If not, it returns nil.

The method for fred-mixin returns t if the operation is meaningful for the
current state of the Fred window or Fred dialog item.

Arguments view A Fred window or Fred dialog item.
window A window.
Chapter 4: Views and Windows 179

operation A symbol specifying one of the standard editing
operations: cut, clear, copy, paste, select-all,
undo, or undo-more.

menu-item The corresponding Edit menu item.

Example
? (window-can-do-operation *top-listener* 'paste)

T

Floating windows

Floating windows are a subclass of windows that appear frontmost on
the screen. (That is, they always “float to the top.”) Floating windows
are generally used for creating tool palettes.

Floating windows respond to clicks, handle activate and
deactivate events, and respond to keystroke events. See the file
windoid-key-events.lisp in the MCL Examples folder for
commented sample code.

These expressions are used in defining and counting floating windows.

windoid [Class name]

Description The class windoid is the class of floating windows, built on window.
Floating windows may be mixed in with other window classes, such as
dialog boxes. In this case, windoid should appear first in the inheritance
path.

initialize-instance [Generic function]

Syntax initialize-instance (windoid windoid) &rest initargs

Description The initialize-instance primary method for windoid initializes a
floating window.

Arguments windoid A floating window.
initargs A list of keywords and values used to initialize the

floating window. No special keywords are used. The
following keywords have default values:
180 Macintosh Common Lisp Reference

:view-size
The default value of the size of the floating window is
#@(115 150).

:window-do-first-click
The value of this initialization argument determines
whether the click that selects a window is also passed to
view-click-event-handler. For all floating
windows, the default value of this variable is true.
The click that selects an application in Multifinder is not
passed to the application unless either the clicked
window is not the front window or the Get Front Clicks
bit is set in the application’s size resource.

windoid-count [Variable]

Description The *windoid-count* variable contains the number of visible floating
windows currently in the MCL environment.
Chapter 4: Views and Windows 181

182 Macintosh Common Lisp Reference

Chapter 5:

Dialog Items and Dialogs

Contents

Dialogs in Macintosh Common Lisp / 185
Dialog items / 185
Dialog boxes / 185
A simple way to design dialogs and program dialog items / 186
Changes to dialogs in Macintosh Common Lisp as of version 2 / 186

Dialog items / 188
MCL forms relating to dialog items / 189
Advanced dialog item functions / 198
Specialized dialog items / 202

Buttons / 202
Default buttons / 203
Static text / 205
Editable text / 206
Checkboxes / 212
Radio buttons / 213
Table dialog items / 216
Pop-up menu dialog items / 227
Scroll-bar dialog items / 228
Sequence dialog items / 234

User-defined dialog items / 236
Dialogs / 237

Modal dialogs / 238
Modeless dialogs / 239

Simple turnkey dialog boxes / 239
MCL forms relating to dialogs / 245

This chapter describes the dialog functionality and the built-in dialog item
classes in Macintosh Common Lisp.
183

The dialog functionality is very flexible in Macintosh Common Lisp. Dialog
items display information and may initiate an action when clicked by the user.
In Macintosh Common Lisp, dialog items can appear in any window. They are
built from the class dialog-item, which is not used directly; you specialize
it and use the subclasses. In turn, dialog-item is built from the class
simple-view, since dialog items have no subviews. Built-in subclasses of
dialog-item include radio buttons, checkboxes, and editable-text fields, as
well as pop-up menus, scroll bars, and tables in dialog boxes.

You should read this chapter if you are programming specialized types of
dialog items.

Before reading this chapter, you should be familiar with the MCL
implementation of views and windows, described in Chapter 5, “Views and
Windows.” The subclass of dialog-item that supports editable text is fred-
dialog-item, documented in Chapter 14, “Programming the Editor.”
184 Macintosh Common Lisp Reference

Dialogs in Macintosh Common Lisp

In the standard Macintosh interface, actions are performed by dialog
items within dialog boxes. Macintosh Common Lisp supports this
functionality and makes it more generalized.

Dialog items

Instead of setting up a specialized class for dialog boxes and alerts,
Macintosh Common Lisp defines any structured communication as
simply a collection of dialog items in a window. You can add dialog
items to any view or window, or you can write specialized classes based
on window, in which dialog items may appear.

Therefore, for creating dialog functionality the important class is
dialog-item.

Built-in MCL dialog items include buttons, radio buttons, checkboxes,
tables, editable text, scroll bars, pop-up menus, and static text. They are
discussed in “Dialog items” on page 185.

In addition, the sample files in the Examples and Library folders
contain code for kinds of dialog items. Of course, you can also define
your own classes of dialog items.

Dialog boxes

Dialog boxes initiate and control well-defined actions in a structured
way. You use them whenever you want the user to do something
complex in which the range of response is predictable or needs to be
controlled. The Print Options dialog box is a good example; it includes
text fields, which the user fills in, and a defined set of choices that are
represented by radio buttons and checkboxes.

Alerts query an action, displaying a message such as “Are you sure you
want to reformat your hard disk?” They request the user to confirm
explicitly before proceeding, or to cancel.
Chapter 5: Dialog Items and Dialogs 185

MCL dialogs are unspecialized subclasses of window, provided for
backward compatibility with earlier versions of Macintosh Common
Lisp. They have methods for all window and view operations, but no
methods of their own. Display, for instance, works the same way in
dialogs as in all other windows. Dialogs are only one of the places you
can use dialog items.

Macintosh Common Lisp provides four predefined standard dialog
boxes for alerts and user responses, discussed in “Simple turnkey
dialog boxes” on page 239.

You can write standard Macintosh dialog boxes quite easily, while the
same functionality also adapts well to other uses. For example, you can
create a hypertext system that includes text, graphics, and dialog items,
or an interactive forms manager, or a spreadsheet, all using largely the
same code.

A simple way to design dialogs and program dialog items

MCL contains a dialog design tool, part of the Interface Toolkit, that
works like a simple paint system. You can choose buttons and fields
from a palette and move them into a new dialog. You can set their
default states and actions. This tool is supplied as source code so it can
be customized; you’ll find it in the Interface Tools folder supplied with
your copy of Macintosh Common Lisp. Its operation is described in
Chapter 7: The Interface Toolkit.

Changes to dialogs in Macintosh Common Lisp as of version 2

If you have used an earlier version of Macintosh Common Lisp, you
will find that the implementation of dialogs has changed substantially,
making them more flexible to use and easier to program.

■ The dialog class, which is a subclass of window, exists only for
compatibility. No methods are specialized on it and it adds no slots.

■ Dialog items may now be added to all views.

■ Some functions have changed to reflect the new definition of dialog.

■ All new functions are CLOS generic functions.

The file old-dialog-hooks.lisp, distributed in the Examples
folder that is part of Macintosh Common Lisp, contains code defining
the old dialog functions in terms of the new ones. You should find it
quite easy, however, to port your old dialog code to Macintosh
Common Lisp version 2.
186 Macintosh Common Lisp Reference

Table 5-1 summarizes the functions that have changed.

■ Table 5-1 Summary of changed dialog functions in Macintosh Common Lisp

Old New

add-dialog-items add-subviews

add-self-to-dialog install-view-in-window

buffer-char-font buffer-char-font-spec

buffer-replace-font buffer-replace-font-spec

buffer-set-font buffer-set-font-spec

catch-abort use restart-case

catch-error use handler-case

catch-error-quietly ignore-errors

color-window-mixin :color-p initialization argument

:dialog-item-colors :part-color-list intialization argument

dialog-item-default-size view-default-size

dialog-item-dialog view-container

(set-)dialog-item-font (set-)view-font

dialog-item-nick-name view-nick-name

(set-)dialog-item-size (set-)view-size

(set-)dialog-item-position (set-)view-position

ed-skip-fwd-wsp&comments buffer-skip-fwd-wsp&comments

find-named-dialog-items view-named, find-named-sibling

item-named view-named

markp buffer-mark-p

:parent keyword to windows,
etc.

:class keyword

remove-dialog-items remove-subviews

remove-self-from-dialog remove-view-from-window

window-(de)activate-

event-handler

view-(de)activate-event-handler

window-buffer fred-buffer
Chapter 5: Dialog Items and Dialogs 187

Dialog items

Dialog items do two things: appear within a view, and perform actions.
Generally speaking, a dialog item inherits its display behavior from
simple-view or from its class; its default methods are also
determined at the class level. You can add specific action at the instance
level.

The base class from which all other dialog items inherit is dialog–
item. This class is not meant to be instantiated directly. Instead, it is the
superclass from which more specific classes of dialog items are built.

The dialog item subclasses provided by Macintosh Common Lisp are

button-dialog-item

check-box-dialog-item

editable-text-dialog-item

fred-dialog-item

radio-button-dialog-item

sequence-dialog-item (a subclass of table-dialog-item)

static–text-dialog–item

table-dialog-item

window-click-event-

handler

view-click-event-handler

window-font view-font

window-hpos fred-hpos

window-line-vpos fred-line-vpos

window-mouse-position view-mouse-position

(set-)window-position (set-)view-position

(set-)window-size (set-)view-size

window-start-mark fred-display-start-mark

window-update fred-update

window-vpos fred-vpos
188 Macintosh Common Lisp Reference

The class fred-dialog-item is discussed in Chapter 14:
Programming the Editor. The others are discussed in this chapter.

In addition, you can use sample files in your MCL Examples and
Library folders to make several other kinds of dialog items, including
scroll bars, icons, and pop-up menus, and of course you can create your
own subclasses of dialog-item.

MCL forms relating to dialog items

The following MCL expressions are used in creating dialog items.

dialog-item [Class name]]

Description The class dialog-item provides the basic functionality shared by all
dialog items. It is built on simple-view.

initialize-instance [Generic function]

Syntax initialize-instance (dialog-item dialog-item) &rest
initargs

Description The initialize-instance primary method for dialog-item
initializes a dialog item. (When instances are actually made,
the function used is make-instance, which calls initialize-
instance.)

Arguments dialog-item A dialog item.
initargs A list of keywords and default values used to initialize a

dialog item. The initargs keywords for all dialog items are
as follows:

:view-size
The size of the dialog item. If not specified or nil, this
value is calculated so that the item’s dialog-item-
text is visible. If the specified value is too small, the item
is clipped when it is drawn. The default value is nil.

:view-container
The dialog box or other view that contains
the item.
Chapter 5: Dialog Items and Dialogs 189

:view-position
The position in the dialog box where the item will be
placed, in the coordinate system of its container. If this
argument is not specified or is specified as nil, the first
available position large enough to hold the item is used. If
no space is large enough, the dialog item is placed in the
upper-left corner of the dialog.

:view-nick-name
The nickname of the dialog item. This feature is used in
conjunction with view-named. The default value is nil.

:view-font
The font in which the text of the dialog item appears. If
nil, the window font is used.

:dialog-item-text
The text of the dialog item. The initial value
is nil.

:dialog-item-handle
For advanced programmers, this option specifies the
handle of the dialog item. See the description of the
dialog-item-handle generic function on page 199.
This option is used only for creating specialized
subclasses of dialog items. The handle is usually allocated
by the install-view-in-window method. Its initial
value is nil.

:dialog-item-enabled-p
The state (enabled or disabled) of the item. Disabled items
are dimmed, and their actions are not run when the user
clicks them.

:part-color-list
A property list of colors to which the parts of the dialog
item should be set. The four possible keywords
are:frame, the outline of the dialog item; :text, its text;
:body, its body; and:thumb, its scroll box. (The scroll
box is the white box that slides inside the scroll bar; scroll
bars are the only dialog items that can have them.)

:dialog-item-action
The action run when the dialog item is selected. The value
of this keyword should be a function or a symbol with a
global function definition. It is called with a single
parameter, the dialog item.

:help-spec
A value describing the Balloon Help for the item. This
may be a string or one of a number of more complicated
specifications, which are documented in the file help-
manager.lisp in your Library folder. The default value
is nil.
190 Macintosh Common Lisp Reference

:wptr A pointer to a window record on the Macintosh heap.
This record can be examined or passed to Macintosh traps
that take a window pointer. The value is nil if the item is
not contained in a window.

dialog-items [Generic function]

Syntax dialog-items (view view) &optional item-class must-be-enabled

Description The dialog-items generic function returns a list of the dialog items in
view.

Arguments view A view.
item-class If the value of item-class is specified and non-nil, then

only dialog items matching item-class are returned. The
default value is nil.

must-be-enabled
If the value of must-be-enabled is true, then only dialog
items that are enabled are returned. The default value is
nil.

make-dialog-item [Function]

Syntax make-dialog-item class position size text &optional action &rest
attributes

Description The make-dialog-item function creates a dialog item using make-
instance.

Arguments class The class of the dialog item.
position The position of the dialog item with respect to its

container.
size The size of the dialog item.
text The text included within the dialog item.
action The action associated with the dialog item.
attributes One or more attributes belonging to the dialog item. The

number and nature of these depend on the type of dialog
item.

Example

This function could be defined as follows:
? (defun make-dialog-item (class position size text

 &optional action &rest attributes)

 (apply #'make-instance class

 :view-position position
Chapter 5: Dialog Items and Dialogs 191

 :view-size size

 :dialog-item-text text

 :dialog-item-action action

 attributes))

dialog-item-action [Generic function]

Syntax dialog-item-action (item dialog-item)

Description The generic function dialog-item-action is called whenever the user
clicks a dialog item. The method for dialog-item calls item’s dialog-
item-action-function, if it is not nil. Otherwise, it does nothing.

The dialog-item-action function is normally called when the mouse
button is released, not when it is pressed.

If an item is disabled, its action is not run.

Since dialog-item-action is usually called by view-click-event-
handler as a result of event processing, event processing is ordinarily
disabled while the dialog-item-action function is running. This means
that other dialog items cannot be selected during the action. To avoid locking
out other event processing, you can use eval-enqueue to insert forms into
the read-eval-print loop. For details, see Chapter 10: Events.

Argument item A dialog item.

dialog-item-action-function [Generic function]

Syntax dialog-item-action-function (item dialog-item)

Description The generic function dialog-item-action-function returns the
value set by the :dialog-item-action initialization argument or the
set-dialog-item-action-function generic function. Unless it is
nil, this function is called with a single argument, item, by the dialog-
item-action method for dialog-item.

This generic function is called by the view-click-event-handler method
for dialog-item when the user clicks a
dialog item.

Argument item A dialog item.
192 Macintosh Common Lisp Reference

set-dialog-item-action-function [Generic function]

Syntax set-dialog-item-action-function (item dialog-item)
new-function

Description The generic function dialog-item-action-function sets the value it
accesses.

Arguments item A dialog item.
new-function A function of one argument or a symbol that has a global

function binding or is nil.

view-click-event-handler [Generic function]

Syntax view-click-event-handler (item dialog-item) where

Description The generic function view-click-event-handler is called by the
event system when the user clicks the dialog item. The method for
dialog-item calls item’s dialog-item-action-function with item
as the single argument. If item’s dialog-item-action-function is
nil, nothing is done.

Arguments item A dialog item.
where The cursor position. It is ignored.

view-focus-and-draw-contents [Generic function]

Syntax view-focus-and-draw-contents (item dialog-item)
&optional visrgn cliprgn

Description The method for dialog items of the generic function view-focus-and-
draw-contents focuses on the container of the dialog item, then calls
view-draw-contents.

Arguments item A dialog item.
visrgn, cliprgn Region records from the view’s wptr. They are ignored.

view-size [Generic function]

Syntax view-size (item dialog-item)

Description The method for dialog items of the generic function view-size returns
the size of the dialog item as a point.
Chapter 5: Dialog Items and Dialogs 193

Argument item A dialog item.

set-view-size [Generic function]

Syntax set-view-size (item dialog-item) h &optional v

Description The method for dialog items of the generic function set-view-size
changes the size of the dialog item to the width and height represented by
h and v, and returns the new size.

Arguments item A dialog item.
h Horizontal position.
v Vertical position. If v is nil, h is assumed to represent a

point.
Example

? (add-subviews my-window

 (setf eddie

 (make-instance 'editable-text-dialog-item)))

NIL

? (point-string (view-size eddie))

"#@(6 17)"

? (set-view-size eddie #@(300 20))

1311020

dialog-item-text [Generic function]

Syntax dialog-item-text (item dialog-item)

Description The generic function dialog-item-text returns the string of text
associated with the dialog item.

Argument item A dialog item.

set-dialog-item-text [Generic function]

Syntax set-dialog-item-text (item dialog-item) text

Description The generic function set-dialog-item-text sets the text associated
with the dialog item to text and returns text.
194 Macintosh Common Lisp Reference

The text of a dialog item has a different meaning for each class of dialog item.
It is the text of static-text and editable-dialog text items. It is the label displayed
inside buttons and to the right of radio buttons and checkboxes.

If you prefer to put text in a different location, set the text to the empty string
and use a separate static-text item to place the text where you would like it.

Tables do not display their dialog item text.

Arguments item A dialog item.
text A string to be used as the new text of the dialog item.

view-font [Generic function]

Syntax view-font (item dialog-item)

Description The generic function view-font returns, as a font spec, the font used by
item, or nil if item does not have its own font. (If item does not have its
own font, it uses its container’s font.)

Argument item A dialog item.

set-view-font [Generic function]

Syntax set-view-font (item dialog-item) new-font

Description The generic function set-view-font sets the font of the dialog item to
new-font.

Arguments item A dialog item.
new-font A font specifier. If nil, the dialog item uses the font of its

window.

view-font-codes [Generic function]

Syntax view-font-codes (item dialog-item)

Description The generic function view-font-codes returns two values, the font-face
code and mode-size code for item’s font. (Font codes, an efficient way of
encoding font specs, are described in Inside Macintosh and in
“Implementation of font codes” on page 75)

Argument item A dialog item.
Chapter 5: Dialog Items and Dialogs 195

set-view-font-codes [Generic function]

Syntax set-view-font-codes (item dialog-item) ff ms &optional
ff-mask ms-mask

Description The generic function set-view-font-codes changes the view font
codes of item.

Arguments item A dialog item.
ff The font/face code. A font/face code is a 32-bit integer

that stores the encoded name of the font and its face
(plain, bold, italic, and so on).

ms The mode/size code. A mode/size code is a 32-bit integer
that indicates the font mode (inclusive-or, exclusive-or,
complemented, and so on) and the
font size.

ff-mask A mask that instructs set-view-font-codes to look
only at certain bits of the font/face integer.

ms-mask A mask that instructs set-view-font-codes to look
only at certain bits of the mode/size integer.

part-color [Generic function]

Syntax part-color (item dialog-item) part

Description The generic function part-color returns the color of the part indicated
by part.

Arguments item A dialog item.
part A keyword specifying which part of the dialog item

should be set. The four possible keywords are:frame,
the outline of the dialog item; :text, its text; :body, its
body; and:thumb, its scroll box. (The scroll box is the
white box that slides inside the scroll bar; scroll bars are
the only dialog items that can have them.)

set-part-color [Generic function]

Syntax set-part-color (item dialog-item) part new-color

Description The generic function set-part-color sets the color of part of the dialog
item, as specified by the arguments, and returns new-color.
196 Macintosh Common Lisp Reference

If you create a new class of dialog items, you may want to define view-draw-
contents to pay attention to these values.

In addition to the keywords specified by part, individual cells in table dialog
items can have colors. See the method on set-part-color for table-
dialog-item.

Arguments item A dialog item.
part A keyword specifying a part of the dialog

item. The same keywords are allowed as for
part-color.

new-color A color, encoded as an integer.

part-color-list [Generic function]

Syntax part-color-list (item dialog-item)

Description The generic function part-color-list returns a list of part keywords
and colors for all the colored components of the dialog item. Components
whose color has not been set are not included.

Argument item A dialog item.

dialog-item-enable [Generic function]

Syntax dialog-item-enable (item dialog-item)

Description The generic function dialog-item-enable enables the dialog item. The
item is not dimmed, and its action is run when the user clicks it. The
function returns nil.

Argument item A dialog item.

dialog-item-disable [Generic function]

Syntax dialog-item-disable (item dialog-item)

Description The generic function dialog-item-disable disables the dialog item.
The dialog item is dimmed; clicks in the item are ignored, and the action
of the item is never run. Disabling a checkbox does not alter its status as
checked, and disabling a radio button does not alter its status as clicked
(you may want to remove the check or click explicitly). The function
returns nil.
Chapter 5: Dialog Items and Dialogs 197

Argument item A dialog item.

dialog-item-enabled-p [Generic function]

Syntax dialog-item-enabled-p (item dialog-item)

Description The generic function dialog-item-enabled-p returns t if the dialog
item is enabled, and nil if it is disabled.

Argument item A dialog item.

Advanced dialog item functions

The following functions can be defined for user-created classes of
dialog items. They can also be shadowed in specialized classes of the
predefined dialog items. For general use of dialog items, you do not
need to use the following functions.

Several sample files demonstrate the use of dialog items. In your MCL
Examples folder, text-edit-dialog-item.lisp shows how to
implement dialog items if you do not want to make Fred a part of your
implementation. In the Library folder, graphic-items.lisp,
scroll-bar-dialog-items.lisp, and scrolling-fred-
dialog-item.lisp implement several specialized types of dialog
items.

install-view-in-window [Generic function]

Syntax install-view-in-window (item dialog-item) window

Description The generic function install-view-in-window is called by set-
view-container when an item becomes part of a view.

This function performs initialization tasks that require the containing window.
It should never be called directly by user code. However, it may be shadowed.
Specialized versions of install-view-in-window should always perform
call-next-method.

The default method sets the size of the dialog item if it does not already have
one, and finds an empty position for the dialog item if it does not already have
a position.
198 Macintosh Common Lisp Reference

Arguments item A dialog item.
window The window to which the dialog item is being added.

remove-view-from-window [Generic function]

Syntax remove-view-from-window (item dialog-item)

Description The generic function remove-view-from-window is called when a
dialog item is removed from a view by a call to set-view-container.
It should never be called directly by user code. However, it may be
shadowed. Specialized versions of remove-view-from-window should
dispose of any Macintosh data the item uses (that is, data not subject to
garbage collection) and should always perform a call-next-method.

Argument item A dialog item.

dialog-item-handle [Generic function]

Syntax dialog-item-handle (item dialog-item)

Description The generic function dialog-item-handle retrieves the handle
associated with item. Dialog items are often associated with handles to
Macintosh data structures, such as control records. By convention, this
handle is stored in the location referenced by dialog-item-handle and
modified by set-dialog-item-handle. The handle is usually nil
when the dialog item is not contained in a window. It is generally set by
install-view-in-window and is reset to nil by remove-view-
from-window.

Argument item A dialog item.

set-dialog-item-handle [Generic function]

Syntax set-dialog-item-handle (item dialog-item) handle

Description The generic function set-dialog-item-handle sets the dialog item
handle associated with item to a new handle.

Arguments item A dialog item.
handle A handle to a Macintosh data structure.
Chapter 5: Dialog Items and Dialogs 199

view-activate-event-handler [Generic function]

Syntax view-activate-event-handler :around (item dialog-item)

Description The generic function view-activate-event-handler is called when
the window containing the dialog item is activated.

If the appearance of the dialog item needs to change to indicate that it is
active, this is the method that should make that change. For example, Fred
dialog items change their highlighting from a pixelwide box to a solid
rectangle and scroll bars make their arrows and scroll box visible.

The view-activate-event-handler generic function is called by set-
view-container if the window in which the newly installed view appears is
active.

Argument item A dialog item.

view-deactivate-event-handler [Generic function]

Syntax view-deactivate-event-handler (item dialog-item)

Description The generic function view-deactivate-event-handler is called
when the window containing the dialog items is deactivated.

If the appearance of the dialog item needs to change to indicate that it is not
active, this is the method that should make that change. For example, Fred
dialog items change their highlighting from a solid rectangle to a 1-pixel-wide
box and scroll bars become an empty rectangle.

The view-deactivate-event-handler generic function is called by set-
view-container if the window in which the newly installed view appears is
not active.

Argument item A dialog item.

view-default-size [Generic function]

Syntax view-default-size (item dialog-item)
200 Macintosh Common Lisp Reference

Description The generic function view-default-size is called by the default
version of install-view-in-window. It is called for dialog items that
are not given an explicit size. The dialog-item method of view-
default-size calculates a size according to the font and text of the
dialog item and the width correction associated with the class of the dialog
item. (See the documentation of dialog-item-width-correction.)

Argument item A dialog item.

dialog-item-width-correction [Generic function]

Syntax dialog-item-width-correction (item dialog-item)

Description The generic function dialog-item-width-correction returns an
integer representing the number of pixels of white space added to the left
and right of the text of a dialog item. The default method for dialog-
item returns 0. Users can write methods for dialog-item-width-
correction if they wish to specialize it for their own classes of dialog
items.

Argument item A dialog item.

with-focused-dialog-item [Macro]

Syntax with-focused-dialog-item (item &optional container)
&body body

Description The macro with-focused-dialog-item executes body with the
drawing environment set up in the coordinate system of container and the
font of item. This is the correct environment for calling view-draw-
contents on a dialog item. When the body exits (normally or
abnormally), the old drawing environment is restored.

Arguments item A dialog item (or any simple view).
container The view focused on whose coordinate system body will

run.
body Forms to be executed with the specified drawing

environment.

Examples

The macro with-font-focused-view could be defined as follows.
(defmacro with-font-focused-view (view &body body)

 (let ((view-sym (gensym)))

 `(let ((,view-sym ,view))

 (with-focused-dialog-item (view view) ,@body))))

The macro view-focus-and-draw-contents for dialog-item
could be defined as follows.
Chapter 5: Dialog Items and Dialogs 201

(defmethod view-focus-and-draw-contents ((item dialog-item)
&optional

 visrgn cliprgn)

 (declare (ignore visrgn cliprgn))

 (with-focused-dialog-item item

 (view-draw-contents item)))

Specialized dialog items

Button, static text, editable text, checkboxes, radio button, tables,
sequences, and user-defined dialog items fall into the category of
specialized dialog items.

The initialization argument keywords documented for the dialog-
item class are applicable to all dialog items. Only the additional
keywords that are specific to each specialized dialog item are
documented in the following sections.

Buttons

Button dialog items are rounded rectangles that contain text. The
following MCL expressions operate on button dialog items.

button-dialog-item [Class name]

Description This is the class used to make buttons. Clicking a button usually has an
immediate result. Buttons are generally given a function for dialog-
item-action-function via the :dialog-item-action
initialization argument.

initialize-instance [Generic function]

Syntax initialize-instance (item button-dialog-item) &rest
initargs
202 Macintosh Common Lisp Reference

Description The initialize-instance primary method for button-dialog-
item initializes a button dialog item. (When instances are actually made,
the function used is make-instance, which calls initialize-
instance.)

Arguments item A button dialog item.
initargs A list of keywords and values used to initialize the

button. These are its special initargs keywords (in
addition to those for dialog-item):

:default-button
An argument specifying whether the button is made the
default button. If this value is nil (the default), the
button is not made the default button. Note that if the
dialog has a default button and :allow-returns is true
for the current key handler, then the Return key will be
handled by the key handler rather than the default
button.

:border-p
An argument specifying whether the button has a border.
If this value is true (the default), the button has a border.

Example
? (setq pearl (make-instance 'button-dialog-item

 :default-button t))

#<BUTTON-DIALOG-ITEM #x42C699>

press-button [Generic function]

Syntax press-button (button button-dialog-item)

Description The press-button generic function highlights button, then calls the
dialog-item-action method for button.

Argument button A button dialog item.

Default buttons

Default buttons are a convenient subclass of button dialog items; they
serve as the default button. A dialog may have one default button. This
button has a bold border and usually may be selected by one of the
keystrokes Return or Enter.

The following MCL expressions operate on default-button dialog items.
Chapter 5: Dialog Items and Dialogs 203

default-button-dialog-item [Class name]

Description The default-button-dialog-item class is the class of default
buttons, a subclass of button-dialog-item.

initialize-instance [Generic function]

Syntax initialize-instance (item default-button-dialog-item)
&rest initargs

Description The initialize-instance primary method for default-button-
dialog-item initializes a default-button dialog item. (When instances
are actually made, the function used is make-instance, which calls
initialize-instance.)

Arguments item A default-button dialog item.
initargs A list of keywords and values used to initialize the

button. This class has no additional initargs keywords, but
has two default values:

:dialog-item-text
The default value of this initialization argument is "OK".

:default-button
The default value of this initialization argument is true.

default-button [Generic function]

Syntax default-button (window window)

Description The default-button generic function returns the current default
button, or nil if the window has no default button. The default button is
the button whose action is run when the user presses Return or Enter. It is
outlined with a heavy black border.

If carriage returns are allowed in the current editable-text item, they are sent to
that item rather than to the default button.

Argument window A window.

set-default-button [Generic function]

Syntax set-default-button (window window) new-button
204 Macintosh Common Lisp Reference

Description The set-default-button generic function changes the default button
according to the value of new-button and returns new-button.

If carriage returns are allowed in the current editable-text item, they are sent to
that item rather than to the default button.

Arguments window A window.
new-button The button that should be made the default button, or

nil, indicating that there should be no default button.

default-button-p [Generic function]

Syntax default-button-p (item button-dialog-item)

Description The default-button-p generic function returns true if item is the
default button in the view-window of item. Otherwise it returns nil.

Argument item A button dialog item.

Static text

The next two entries define and initialize the class of static-text dialog
items.

static-text-dialog-item [Class name]

Description This is the class of static-text dialog items. Static text may be positioned
anywhere in a dialog window to supply additional information to the
user. The text appears in the window’s font unless otherwise specified.
Clicking text does not generally initiate an action, but it may.

Depending on the amount of text and the size of the item, the text may wrap
to fit in its area. If the size is not specified, a size that accommodates the text
without wrapping is used.

initialize-instance [Generic function]

Syntax initialize-instance (item static-text-dialog-item)
&rest initargs
Chapter 5: Dialog Items and Dialogs 205

Description The initialize-instance primary method for static-text-
dialog-item initializes a static-text dialog item. (When instances are
actually made, the function used is make-instance, which calls
initialize-instance.)

Arguments item A static-text dialog item.
initargs A list of keywords and values used to initialize the static-

text dialog item. The subclass static-text-dialog-
item does not have any additional keyword arguments
beyond those for dialog-item.

Editable text

The following entries pertain to the class of editable-text dialog items.

editable-text-dialog-item [Class name]

Description This is the class of editable-text dialog items, a subclass of fred-dialog-
item. Its superclasses include fred-mixin and key-handler-mixin.
The class adds no new initialization arguments, and there is only one
method specialized on the class, view-default-font.

The user can give standard Macintosh commands to edit the text of such items.
For instance, the user can select, cut, copy, and paste the text of editable-text
dialog items.

Editable text is usually surrounded by a box, although this feature may be
disabled.

At any given time, there is only one current editable-text dialog item. This is
the item with a blinking cursor or a highlighted selection. User typing is
directed to this item by a call to view-key-event-handler. Pressing the
Tab key makes the next editable-text dialog item current, cycling back to the
first after the last. The current editable-text dialog item can be determined by
calling current-key-handler and can be changed by calling
set-current-key-handler.

The text of an editable-text-dialog-item can be accessed by calling
dialog-item-text and changed by calling set-dialog-item-text.
When an editable text item is created, the initial text is specified using the
:dialog-item-text initialization argument.

To refer unambiguously to an editable-text dialog item, you can give it a
nickname.
206 Macintosh Common Lisp Reference

 TipThe file text-edit-dialog-item.lisp, in your Examples folder, provides an
implementation of the class editable-text-dialog-item using
the Macintosh TextEdit Manager. If your application does not require
full Fred editing capability in editable text, you may wish to use text-
edit-dialog-item instead of editable-text-dialog-item.
Most of the built-in MCL dialogs containing editable text items
instantiate these items as editable-text-dialog-item rather than
as fred-dialog-item. If your application needs to use built-in
dialogs but does not need Fred editing capability within those dialogs,
you can redefine the class editable-text-dialog-item to be a
subclass of text-edit-dialog-item.

initialize-instance [Generic function]

Syntax initialize-instance (item editable-text-dialog-item)
&rest initargs

Description The initialize-instance primary method for editable-text-
dialog-item initializes an editable-text dialog item. (When instances are
actually made, the function used is make-instance, which calls
initialize-instance.)

Arguments item An editable-text dialog item.
initargs A list of keywords and values used to initialize the

editable-text dialog item. It has no new initialization
arguments beyond those it inherits from fred-dialog-
item.

view-key-event-handler [Generic function]

Syntax view-key-event-handler (item fred-mixin) char

Description The generic function view-key-event-handler examines the current
keystroke and determines what is to be done with it.

The method for fred-mixin binds the *current-keystroke* variable to
the keystroke of the current event and runs the Fred command associated with
the keystroke.

Arguments item An editable-text dialog item.
char Any keystroke. If char is a carriage return, this function is

called only if allow-returns-p is true for the item.
Chapter 5: Dialog Items and Dialogs 207

key-handler-mixin [Class name]

Description The class key-handler-mixin should be mixed into any class that
handles key events. The class fred-dialog-item includes key-
handler-mixin.

key-handler-p [Generic function]

Syntax key-handler-p (item dialog-item)
key-handler-p (key-handler key-handler-mixin)

Description The key-handler-p generic function checks to see whether item is a key
handler. When key-handler-p is called on an instance of a class one of
whose superclasses is key-handler-mixin, the function returns t
unless the key handler is disabled. The method for dialog-item returns
nil.

Arguments item A dialog item.
key-handler An object one of whose superclasses is

key-handler-mixin.

exit-key-handler [Generic function]

Syntax exit-key-handler (item key-handler-mixin) new-text-item

Description The generic function exit-key-handler is called when an editable-text
dialog item that is the current key handler is about to be exited. At this
point, it is still the current key handler, but soon it won’t be. If the function
returns t (as the method for key-handler-mixin does), new-text-item is
made the new key handler. If it returns nil, item remains the current-
key-handler.

Arguments item An editable-text dialog item.
new-text-item The editable-text dialog item about to be made current.

enter-key-handler [Generic function]

Syntax enter-key-handler (item key-handler-mixin) old-text-item

Description The generic function enter-key-handler is called when a key handler
such as an editable-text dialog item has just been made current.
208 Macintosh Common Lisp Reference

The method for key-handler-mixin doesn’t do anything; it is a hook on
which you can specialize behavior. For example, you can set another dialog
item as the current key handler, as in the example.

Arguments item An editable-text dialog item.
old-text-item The previously current editable-text item in the dialog.

This is nil the first time an editable-text item is added to
a dialog.

Example

Here is an example of entering and exiting fields by polling through the
key handlers enter-key-handler and exit-key-handler. The
dialog foo contains two editable-text dialog items, Changing and
Checking. Checking is a simple instance of editable-text-
dialog-item. Changing is an instance of a subclass, changer-
text-item, which has methods for enter-key-handler and
exit-key-handler. These methods do all the work.

If you edit the text of Changing, the exit-key-handler method for
changer-text-item brings up a message when the next item is
clicked. If you edit the text of Checking, the enter-key-handler
method for changer-text-item returns nil and Checking
remains the current-key-handler until the original text is restored.

This example is available as the file check-and-change.lisp in the
Examples folder distributed as part of Macintosh Common Lisp.
;;Checking is a simple editable-text-dialog-item

(setq Checking (make-instance 'editable-text-dialog-item

 :dialog-item-text "Click here to check"

 :view-position #@(16 16)))

;; changer-text-item is a new subclass

(defclass changer-text-item (editable-text-dialog-item) ()

 (:default-initargs :dialog-item-text

 "Change me and see what happens"))

;; changer-text-item has methods for enter-key-handler

;; and exit-key-handler

(defmethod exit-key-handler

 ((changer-text-item changer-text-item) next-item)

 (declare (ignore next-item))

 (unless (equalp (dialog-item-text changer-text-item)

 "Change me and see what happens")

 (message-dialog "You changed me!"))

 t)

(defmethod enter-key-handler
Chapter 5: Dialog Items and Dialogs 209

 ((changer-text-item changer-text-item) old-text)

 (unless (equalp (dialog-item-text Checking)

 "Click here to check")

 (set-current-key-handler

 (view-window changer-text-item) old-text)))

(setq foo (make-instance 'dialog))

(setq Changing (make-instance 'changer-text-item

 :view-position #@(10 100)

 :draw-outline nil))

(add-subviews foo Checking Changing)

allow-returns-p [Generic function]

Syntax allow-returns-p (item key-handler-mixin)

Description The generic function allow-returns-p returns true if carriage returns
are allowed in the editable-text dialog item. Otherwise, it returns false.

Argument item An editable-text dialog item.

set-allow-returns [Generic function]

Syntax set-allow-returns (item key-handler-mixin) value

Description The generic function set-allow-returns sets whether carriage returns
are allowed in the editable-text dialog item.

Arguments item An editable-text dialog item.
value If value is true, carriage returns are allowed. If it is nil,

they are not.

allow-tabs-p [Generic function]

Syntax allow-tabs-p (item key-handler-mixin)

Description The allow-tabs-p generic function returns true if tabs are allowed in
the editable-text dialog item. Otherwise, it returns false.

Argument item An editable-text dialog item.
210 Macintosh Common Lisp Reference

set-allow-tabs [Generic function]

Syntax set-allow-tabs (item editable-text-dialog-item) value

Description The set-allow-tabs generic function sets whether tabs are allowed in
the editable-text dialog item.

Arguments item An editable-text dialog item.
value If value is true, tabs are allowed. If it is nil, they are not.

cut [Generic function]

copy [Generic function]

paste [Generic function]

clear [Generic function]

undo [Generic function]

undo-more [Generic function]

select-all [Generic function]

Syntax cut (window window)
copy (window window)
paste (window window)
clear (window window)
undo (window window)
undo-more (window window)
select-all (window window)

Description These generic functions are each specialized on the window class (as well
as on fred-mixin, described inChapter 14: Programming the Editor).
Each generic function calls the same generic function on the current key
handler of window, if there is one. The methods applicable to fred-mixin
perform the operation.

Argument window A window whose first direct superclass is fred-mixin,
which provides editing capability.
Chapter 5: Dialog Items and Dialogs 211

Checkboxes

Checkboxes are small squares that toggle an X mark on and off when
clicked. The following class and functions govern the behavior of
checkboxes.

check-box-dialog-item [Class name]

Description The check-box-dialog-item class is the class of checkbox dialog
items.

initialize-instance [Generic function]

Syntax initialize-instance (dialog-item check-box-dialog-item)
&rest initargs

Description The initialize-instance primary method for check-box-
dialog-item initializes a checkbox dialog item. (When instances are
actually made, the function used is make-instance, which calls
initialize-instance.)

Arguments item A checkbox dialog item.
initargs A list of keywords and values used to initialize the

checkbox. The additional initialization argument
keyword for checkboxes is

:check-box-checked-p
This keyword specifies whether the item is initially
checked. Its value is true if the item is checked and nil if
it is not. Its default value is nil.

dialog-item-action [Generic function]

Syntax dialog-item-action (item check-box-dialog-item)

Description The check-box-dialog-item primary method for dialog-item-
action toggles the state of the box from unchecked to checked or vice
versa, then calls call-next-method.

Argument item A checkbox dialog item.
212 Macintosh Common Lisp Reference

check-box-check [Generic function]

Syntax check-box-check (item check-box-dialog-item)

Description The check-box-check generic function places an X in the checkbox. The
function merely places an X in the box; it does not run the action of the
dialog item.

Argument item A checkbox dialog item.

check-box-uncheck [Generic function]

Syntax check-box-uncheck (item check-box-dialog-item)

Description The check-box-uncheck generic function removes the X from the
checkbox. The function merely removes the X from the box; it does not run
the action of the dialog item. The function returns nil.

Argument item A checkbox dialog item.

check-box-checked-p [Generic function]

Syntax check-box-checked-p (item check-box-dialog-item)

Description The check-box-checked-p generic function returns t if there is an X in
the checkbox and nil otherwise. The function merely reports on the state
of the box; it does not run the action of the dialog item.

Argument item A checkbox dialog item.

Radio buttons

Radio buttons are small circles that contain a black dot when they are
selected (“pushed”). Radio buttons occur in clusters, and only one
button in a cluster may be pushed at a time. Clicking a radio button
unpushes the previously pushed one. The following class and functions
govern the behavior of radio buttons.
Chapter 5: Dialog Items and Dialogs 213

radio-button-dialog-item [Class name]

Description The radio-button-dialog-item class is the class of radio-button
dialog items.

initialize-instance [Generic function]

Syntax initialize-instance (item radio-button-dialog-item)
&rest initargs

Description The initialize-instance primary method for radio-button-
dialog-item initializes a radio-button dialog item. (When instances are
actually made, the function used is make-instance, which calls
initialize-instance.)

Arguments item A radio-button dialog item.
initargs A list of keywords and values used to initialize a radio

button. The initargs keywords, in addition to those for
dialog-item, are

:radio-button-cluster
The cluster to which the radio button belongs. Only one
button from a given cluster can be pushed at a time.
Whenever the user clicks a button, the function radio-
button-unpush is applied to all other buttons having
the same value for radio-button-cluster. To check
to see whether two buttons are in the same cluster, use
eq. The default cluster is 0.

:radio-button-pushed-p
This keyword determines whether the radio button is
initially pushed. The default value is nil.

radio-button-cluster [Generic function]

Syntax radio-button-cluster (item radio-button-dialog-item)

Description The radio-button-cluster generic function returns the cluster of item
as an integer.

Argument item A radio-button dialog item.
214 Macintosh Common Lisp Reference

pushed-radio-button [Generic function]

Syntax pushed-radio-button (window window) &optional cluster

Description The pushed-radio-button generic function returns the pushed radio
button from the specified cluster. The value nil is returned if there is no
such cluster or if all the radio buttons in a cluster
are disabled.

Arguments window A window.
cluster The cluster of radio buttons to search. Radio button

clusters are numbered, starting with 0. The default is 0.

radio-button-push [Generic function]

Syntax radio-button-push (item radio-button-dialog-item)

Description The radio-button-push generic function pushes a radio button and
unpushes the previously pushed one. The function merely toggles the
states of the two radio buttons; it does not run any action. The function
returns nil.

Argument item A radio-button dialog item.

radio-button-unpush [Generic function]

Syntax radio-button-unpush (item radio-button-dialog-item)

Description The radio-button-unpush generic function unpushes the radio button
and returns nil.

Argument item A radio-button dialog item.

radio-button-pushed-p [Generic function]

Syntax radio-button-pushed-p (item radio-button-dialog-item)

Description The radio-button-pushed-p generic function returns t if the radio
button is pushed and nil if it is not. The default value
is nil.

Argument item A radio-button dialog item.
Chapter 5: Dialog Items and Dialogs 215

Table dialog items

Table dialog items are tables within a window. They allow the user to
view a set of items and select items from the set. These tables may be
one- or two-dimensional (see Figure 5-1). Two-dimensional tables look
like spreadsheets. One-dimensional tables look like the file selection
boxes displayed after a user chooses the Save as command. Each item
in a table takes up one cell, and there is an 8 KB limit on the total
number of cells a table may have.

Table dialog items are implemented using the Macintosh List Manager
(but are not called “lists” to avoid confusion with Lisp lists).

■ Figure 5-1 Examples of tables used in dialog boxes

add-points
subtract-points
inval-dialog-item

with-clip-rect
dialog-item
(list :handle)
dialog
dialog-item
control-dialog-item
button-dialog-item

exist-default

foo
bar
baz
bim
quux

CaSe
!!!
1234
(+ 5 4)
jjj

foo
bar
baz
bim
quux

111 333

aaa

ccc
ddd

bbb

Two-dimensional table dialog item with
horizontal scroll bar

One-dimensional table dialog item
arranged vertically with no scroll bar

One-dimensional table dialog item arranged
vertically with vertical scroll bar

One-dimensional table dialog item arranged
horizontally with horizontal scroll bar

bbb
216 Macintosh Common Lisp Reference

All the functions used with other dialog items (such as view-size and
view-position) work for tables, except that the text of table dialog
items is not shown.

Table dialog items are rectangles with a series of cells (see Figure 5-2).
Your program can access information about table dialog items, such as
the cells that are selected, the position of any cell, and the contents of
any cell.

A cell is referenced by a point, encoding the horizontal and vertical
indices of the cell within the table.

■ Figure 5-2 Cell positions represented as points

table-dialog-item [Class name]

Description The table-dialog-item class provides the base functionality for all
types of table dialog items. You should not directly instantiate this class,
but should create subclasses from it.

The common uses of table dialog items are provided by sequence dialog items,
described “Sequence dialog items” on page 234. However, you may want to
implement your own subclass of table dialog items with specialized behavior.
The file array-dialog-item.lisp in your MCL Examples folder
implements a class of tables displaying multidimensional arrays.
Chapter 5: Dialog Items and Dialogs 217

initialize-instance [Generic function]

Syntax initialize-instance (item table-dialog-item)
&rest initargs &key :table-dimensions :selection-type
:table-print-function :table-vscrollp :table-hscrollp
:grow-icon-p :cell-fonts :cell-size
:visible-dimensions

Description The initialize-instance primary method for table-dialog-
item initializes a table dialog item. (When instances are actually made,
the function used is make-instance, which calls initialize-
instance.)

Arguments item A table dialog item.
initargs The initialization arguments for the menu item and their

initial values, if any. These are its special initargs
keywords (in addition to those for dialog-item):

:table-dimensions
The horizontal and vertical dimensions of the table in
number of cells, expressed as a point. The default value is
#@(0 0). Due to a limitation of the Macintosh List
Manager, no table dialog item may have more than 8192
(8 KB) cells.

:selection-type
This keyword determines whether the table dialog item
allows single or multiple selections, and whether multiple
selections must be contiguous. Possible keywords are
:single, :contiguous, and :disjoint. The default
value is :single.

◆Note: To get a :disjoint selection, you must hold down
the Command key as you select items. To get a
:contiguous selection, hold down the Shift key.

:table-print-function
The function used by draw-cell-contents to print the
contents of the cell. The default value is #'princ. If
given, this should be a function of two arguments, the
value to be printed and the stream.

:table-vscrollp
This keyword determines whether the table dialog item
has a vertical scroll bar. The default is to include a scroll
bar if one is needed in order to view the entire table.

:table-hscrollp
This keyword determines whether the table dialog item
has a horizontal scroll bar. The default is to include a
scroll bar if one is needed in order to view the entire table.
218 Macintosh Common Lisp Reference

:grow-icon-p
The value passed as the HasGrow parameter to the
#_LNew trap when install-view-in-window creates
the table. The default value is nil.

:cell-fonts
A property list of cells and font specs. See the description
of set-cell-font, later in this section.

:cell-size
Horizontal and vertical dimensions of the cells in the table
dialog item. The default value is nil, meaning that the
cell size is computed to be big enough to accommodate
the values of all the cells.

:visible-dimensions
The visible dimensions of the table. The default value is
nil, meaning that the visible dimensions of the table are
calculated and the entire table is visible.

cell-contents [Generic function]

Syntax cell-contents (item table-dialog-item) h &optional v

Description The cell-contents generic function returns the contents of the cell
specified by h and v. The method for table-dialog-item returns nil.

The cell-contents method should be specialized by subclasses of table-
dialog-item. It is called by draw-cell-contents.

Arguments item A table dialog item.
h Horizontal index.
v Vertical index. If the value of v is nil, h is assumed to

represent a point.

redraw-cell [Generic function]

Syntax redraw-cell (item table-dialog-item) h &optional v

Description The redraw-cell generic function redraws the contents of cell. When a
single cell changes, calling this function explicitly is much more efficient
than redrawing the entire table dialog item.

Redrawing the cell involves three operations:

1. Setting the dialog’s clip rectangle so that drawing is restricted to
the cell.

2. Moving the pen to a position 3 pixels above the bottom of the cell
and 3 pixels to the right of the left edge of the cell.
Chapter 5: Dialog Items and Dialogs 219

3. Calling draw-cell-contents.

Arguments item A table dialog item.
h Horizontal index.
v Vertical index. If the value of v is nil, h is assumed to

represent a point.

draw-cell-contents [Generic function]

Syntax draw-cell-contents (item table-dialog-item) h
&optional v

Description The draw-cell-contents generic function draws the contents of cell. It
may be shadowed to provide a specialized display. This function should
not be called directly. It should be called only by redraw-cell, which
prepares the window for the drawing.

The default method of draw-cell-contents shows the printed
representation of the cell contents (using the function stored in the function cell
of :table-print-function, which defaults to princ). If the contents are
too long to fit in the cell, an ellipsis is added at the end.

The draw-cell-contents function may be shadowed to provide
specialized drawing (for example, to create a table of icons or patterns). In
many cases, however, you don’t need to redefine draw-cell-contents;
you can often achieve the desired results with a function in :table-print-
function.

Arguments item A table dialog item.
h Horizontal index.
v Vertical index. If the value of v is nil, h is assumed to

represent a point.

highlight-table-cell [Generic function]

Syntax highlight-table-cell (item table-dialog-item) cell rect
selectedp

Description The highlight-table-cell generic function highlights cell. This
function may be shadowed to provide a specialized display. The
highlight-table-cell function should not be called directly. It is
automatically called by the view-click-event handler for table-
dialog-item.

Arguments item A table dialog item.
cell The cell to be drawn.
220 Macintosh Common Lisp Reference

rect The bounding rectangle of cell.
selectedp The state (selected or unselected) of the cell. If the value of

selectedp is true, the cell is selected. If it is nil, the cell is
unselected.

table-dimensions [Generic function]

Syntax table-dimensions (item table-dialog-item)

Description The table-dimensions generic function returns a point indicating the
number of cells horizontally and vertically in the table dialog item.

Argument item A table dialog item.

set-table-dimensions [Generic function]

Syntax set-table-dimensions (item table-dialog-item) h
&optional v

Description The set-table-dimensions generic function sets the number of cells
horizontally and vertically according to h and v.

There is an 8 KB limit on the total number of cells.

Arguments item A table dialog item.
h Horizontal number of cells.
v Vertical number of cells. If the value of v is nil, h is

assumed to represent a point.

visible-dimensions [Generic function]

Syntax visible-dimensions (item table-dialog-item)

Description The visible-dimensions generic function returns a point indicating
the number of cells visible in the horizontal and vertical dimensions.

Argument item A table dialog item.

set-visible-dimensions [Generic function]

Syntax set-visible-dimensions (item table-dialog-item) h
&optional v
Chapter 5: Dialog Items and Dialogs 221

Description The set-visible-dimensions generic function resizes the table so
that h cells are visible per row and v cells are visible per column. The new
dimensions are returned as a point.

Arguments item A table dialog item.
h Horizontal number of cells.
v Vertical number of cells. If the value of v is nil, h is

assumed to represent a point.

The cell-size and set-cell-size functions that follow provide
an alternative to view-size for specifying the size of a table dialog
item.

cell-size [Generic function]

Syntax cell-size (item table-dialog-item)

Description The cell-size generic function returns the size of a cell in the table
dialog item. All the cells have the same size.

Argument item A table dialog item.

set-cell-size [Generic function]

Syntax set-cell-size (item table-dialog-item) h &optional v

Description The set-cell-size generic function sets the cell size according to h and
v and returns the new size as a point.

Arguments item A table dialog item.
h Horizontal size (width).
v Vertical size (height). If the value of v is nil, h is assumed

to represent a point.

cell-font [Generic function]

Syntax cell-font (item table-dialog-item) h &optional v

Description The cell-font generic function returns the font used by a cell (specified
by h and v) or nil if the cell uses the font of the dialog item.

Arguments item A table dialog item.
h Horizontal index.
222 Macintosh Common Lisp Reference

v Vertical index. If the value of v is nil, h is assumed to
represent a point.

set-cell-font [Generic function]

Syntax set-cell-font (item table-dialog-item) cell font-spec

Description The set-cell-font generic function sets the font of cell to
font-spec.

Arguments item A table dialog item.
cell A cell in the table dialog item, encoded as a point.
font-spec A font spec.

part-color [Generic function]

Syntax part-color (item table-dialog-item) part

Description The part-color method for table-dialog-item returns the color of
the part of the table dialog item indicated by part.

Arguments item A table dialog item.
part A keyword. In addition to the keywords allowed for

dialog items, part may be a point indicating a cell.

set-part-color [Generic function]

Syntax set-part-color (item table-dialog-item) part color

Description The set-part-color method for table-dialog-item sets the color
of part of the table dialog item, as specified by the arguments, and returns
color.

Arguments item A table dialog item.
part In addition to the keywords allowed for dialog items, part

may be an integer indicating a cell. The default cell-
drawing routine draws the contents of the cell in the color
you have specified.

color A color, encoded as a point.
Chapter 5: Dialog Items and Dialogs 223

cell-select [Generic function]

Syntax cell-select (item table-dialog-item) h &optional v

Description The cell-select generic function selects the cell specified by h and v.
Previously selected cells are not affected.

Arguments item A table dialog item.
h Horizontal index.
v Vertical index. If the value of v is nil, h is assumed to

represent a point.

cell-deselect [Generic function]

Syntax cell-deselect (item table-dialog-item) h &optional v

Description The cell-deselect generic function deselects the cell specified by h and
v.

Arguments item A table dialog item.
h Horizontal index.
v Vertical index. If the value of v is nil, h is assumed to

represent a point.

cell-selected-p [Generic function]

Syntax cell-selected-p (item table-dialog-item) h &optional v

Description The cell-selected-p generic function returns t if the cell specified by
h and v is selected. Otherwise, it returns nil.

Arguments item A table dialog item.
h Horizontal index.
v Vertical index. If the value of v is nil, h is assumed to

represent a point.

selected-cells [Generic function]

Syntax selected-cells (item table-dialog-item)
224 Macintosh Common Lisp Reference

Description The selected-cells generic function returns a list of all the cells
selected in the table dialog item. Each cell is represented by a point. If no
cells are selected, nil is returned.

Argument item A table dialog item.

scroll-to-cell [Generic function]

Syntax scroll-to-cell (item table-dialog-item) h &optional v

Description The scroll-to-cell generic function causes the table dialog item to
scroll so that the cell specified by h and v is in the upper-left corner.

Arguments item A table dialog item.
h Horizontal index.
v Vertical index. If the value of v is nil, h is assumed to

represent a point.

scroll-position [Generic function]

Syntax scroll-position (item table-dialog-item)

Description The scroll-position generic function returns the cell indices of the
cell in the upper-left corner of the table dialog item. (This is not a position
in window coordinates but indicates which cell is in the upper-left corner.)

Argument item A table dialog item.

cell-position [Generic function]

Syntax cell-position (item table-dialog-item) h &optional v

Description The cell-position generic function returns the position of the upper-
left corner of the cell if the cell is visible. It returns nil if the cell is not
currently visible. The position returned is in the coordinate system of the
item’s container.

Arguments item A table dialog item.
h Horizontal index.
v Vertical index. If the value of v is nil, h is assumed to

represent a point.
Chapter 5: Dialog Items and Dialogs 225

point-to-cell [Generic function]

Syntax point-to-cell (item table-dialog-item) h &optional v

Description The point-to-cell generic function returns the cell enclosing the point
represented by h and v, or nil if the point is not within a cell.

Arguments item A table dialog item.
h Horizontal position.
v Vertical position. If the value of v is nil, h is assumed to

represent a point.

table-hscrollp [Generic function]

Syntax table-hscrollp (item table-dialog-item)

Description The table-hscrollp generic function returns t if item has a horizontal
scroll bar and nil otherwise.

Argument item A table dialog item.

table-vscrollp [Generic function]

Syntax table-vscrollp (item table-dialog-item)

Description The table-vscrollp generic function returns t if item has a vertical
scroll bar and nil otherwise.

Argument item A table dialog item.

table-print-function [Generic function]

Syntax table-print-function (item table-dialog-item)

Description The table-print-function generic function returns the function used
by draw-cell-contents to print the contents of the cell.

Argument item A table dialog item.
226 Macintosh Common Lisp Reference

Pop-up menu dialog items

A pop-up menu dialog item is a menu within a dialog box or other view
containing dialog items. The Commands menu in Inspector windows is
an example of a pop-up menu. For other examples, look at the file
CCL:library;pop-up-menu.lisp.

The following MCL expressions govern the behavior of pop-up menus.

pop-up-menu [Class name]

Description The class pop-up-menu is the class of pop-up menus, built on menu.

initialize-instance [Generic function]

Syntax initialize-instance (menu pop-up-menu) &rest initargs

Description The initialize-instance primary method for pop-up-menu
initializes a pop-up menu. (When instances are actually made, the
function used is make-instance, which calls initialize-instance.)

Arguments menu A pop-up menu.
initargs A set of initial arguments and values used for initializing

the pop-up menu:
:default-item

An integer identifying the default item that will be
selected from the menu. The default is 1. The first item is
1, not 0.

:auto-update-default
An argument specifying how defaults are handled. If true
(the default), each time an item is selected from the pop-
up menu, it becomes the default. Otherwise, the default
item remains fixed.

:item-display
An argument specifying whether the menu item or its
value is displayed. If the value is :selection (the
default), displays the default menu item. Otherwise the
value itself is displayed as if by (format t "~a" value).

:menu-items
A list of items to be added to the newly created pop-up
menu.
Chapter 5: Dialog Items and Dialogs 227

:menu-colors
A property list of menu parts and colors. The allowable
parts are given in the definition of set-part-color.
For details, see “Menubar colors” on page 98 and Chapter
6: Color.

:dialog-item-text
The text of the pop-up menu. The default value is "". If a
value is specified and is not "", this becomes a label for
the pop-up menu, which is displayed to the left of the box
for the :item-display.

:dialog-item-action
The dialog-item-action generic function is not
called by view-click-event-handler for a pop-up
menu.

:help-spec
A value describing the Balloon Help for the item. This
may be a string or one of a number of more complicated
specifications, which are documented in the file help-
manager.lisp in your Library folder. The default value
is nil.

Example

See the file pop-up-menu.lisp in your MCL Library folder.

Scroll-bar dialog items

A scroll-bar dialog item is a dialog item that is a scroll bar. The
following MCL expressions govern the behavior of scroll-bar dialog
items.

scroll-bar-dialog-item [Class name]

Description The scroll-bar-dialog-item class is the class of scroll-bar dialog
items.

initialize-instance [Generic function]

Syntax initialize-instance (item scroll-bar-dialog-item)
&rest initargs
228 Macintosh Common Lisp Reference

Description The initialize-instance primary method for scroll-bar-
dialog-item initializes a scroll-bar dialog item. (When instances are
actually made, the function used is make-instance, which calls
initialize-instance.)

For full information on scroll bars, see Inside Macintosh.
Arguments item A scroll-bar dialog item.

initargs A set of initial arguments and values used for initializing
the scroll-bar dialog item:

:direction
The direction of the scroll bar. Valid values are
:horizontal and :vertical (the default).

:max The maximum setting of the scroll bar. This value must be
an integer; it defaults to 100.

:min The minimum setting of the scroll bar. This value must be
an integer; it defaults to 0.

:page-size
The amount the setting of the scroll bar will change when
the user clicks the gray area above or below the scroll box.
The default value is 5.

:scroll-size
The amount the setting of the scroll bar will change when
the user clicks one of the arrows at its two ends. The
default value is 1.

:setting The initial setting of the scroll bar.
:track-thumb-p

An argument specifying behavior during scrolling. If
true, the scroll box is moved and scroll-bar-changed
is called as the user drags the scroll box. Otherwise, an
outline is dragged and the scrolling does not actually
happen until the user releases the mouse button. The
default value is nil.

:scrollee
An argument specifying what it is that the scroll bar
scrolls. The default value is nil.

:pane-splitter
An argument specifying the position of a pane splitter. If
the scroll bar is :vertical, a value of :top means above
the scroll bar and any other non-nil value means below
it. If the scroll bar is :horizontal, a value of :left
means to the left of the scroll bar and any other non-nil
value means to the right of it. If nil, there is no pane
splitter. The default value is nil.
Chapter 5: Dialog Items and Dialogs 229

:help-spec
A value describing the Balloon Help for the item. This
may be a string or one of a number of more complicated
specifications, which are documented in the file help-
manager.lisp in your Library folder. The default value
is nil.

scroll-bar-length [Generic function]

Syntax scroll-bar-length (item scroll-bar-dialog-item)

Description The scroll-bar-length generic function returns the length of item.

Argument item A scroll-bar dialog item.

set-scroll-bar-length [Generic function]

Syntax set-scroll-bar-length (item scroll-bar-dialog-item)
new-length

Description The set-scroll-bar-length generic function sets the length of item to
new-length.

Arguments item A scroll-bar dialog item.
new-length The new length of item.

scroll-bar-max [Generic function]

Syntax scroll-bar-max (item scroll-bar-dialog-item)

Description The scroll-bar-max generic function returns the maximum setting of
item.

Argument item A scroll-bar dialog item.

set-scroll-bar-max [Generic function]

Syntax set-scroll-bar-max (item scroll-bar-dialog-item)
new-value

Description The set-scroll-bar-max generic function sets the maximum setting of
item to new-value.
230 Macintosh Common Lisp Reference

Arguments item A scroll-bar dialog item.
new-value The new maximum setting of item.

scroll-bar-min [Generic function]

Syntax scroll-bar-min (item scroll-bar-dialog-item)

Description The scroll-bar-min generic function returns the minimum setting of
item.

Argument item A scroll-bar dialog item.

set-scroll-bar-min [Generic function]

Syntax set-scroll-bar-min (item scroll-bar-dialog-item)
new-value

Description The set-scroll-bar-min generic function sets the minimum setting of
item to new-value.

Arguments item A scroll-bar dialog item.
new-value The new minimum setting of item.

scroll-bar-page-size [Generic function]

Syntax scroll-bar-page-size (item scroll-bar-dialog-item)

Description The scroll-bar-page-size generic function returns the page size of
item.

Argument item A scroll-bar dialog item.

scroll-bar-scroll-size [Generic function]

Syntax scroll-bar-scroll-size (item scroll-bar-dialog-item)

Description The scroll-bar-scroll-size generic function returns the scroll size
of item.

Argument item A scroll-bar dialog item.
Chapter 5: Dialog Items and Dialogs 231

scroll-bar-scrollee [Generic function]

Syntax scroll-bar-scrollee (item scroll-bar-dialog-item)

Description The scroll-bar-scrollee generic function retrieves the scrollee of
item (that is, what item is scrolling).

Argument item A scroll-bar dialog item.

set-scroll-bar-scrollee [Generic function]

Syntax set-scroll-bar-scrollee (item scroll-bar-dialog-item)
new-scrollee

Description The set-scroll-bar-scrollee generic function sets the scrollee of
item (that is, what item is scrolling) to new-scrollee.

Arguments item A scroll-bar dialog item.
new-scrollee The new scrollee of item.

scroll-bar-setting [Generic function]

Syntax scroll-bar-setting (item scroll-bar-dialog-item)

Description The scroll-bar-setting generic function returns the current setting
of item.

Argument item A scroll-bar dialog item.

set-scroll-bar-setting [Generic function]

Syntax set-scroll-bar-setting (item scroll-bar-dialog-item)
new-setting

Description The set-scroll-bar-setting generic function sets the setting of item
to new-setting. It does not call dialog-item-action.

Arguments item A scroll-bar dialog item.
new-setting The new setting of item.
232 Macintosh Common Lisp Reference

scroll-bar-track-thumb-p [Generic function]

Syntax scroll-bar-track-thumb-p (item scroll-bar-dialog-item)

Description The scroll-bar-track-thumb-p generic function returns a value
indicating the behavior of item when the scroll box is dragged. If true, the
scroll box moves and the function scroll-bar-changed is called as the
user drags the scroll box. If nil, only an outline of the scroll box moves
and scrolling does not occur until the user releases the mouse button. The
default value is nil.

Argument item A scroll-bar dialog item.

set-scroll-bar-track-thumb-p [Generic function]

Syntax set-scroll-bar-track-thumb-p (item scroll-bar-dialog-
item) value

Description The set-scroll-bar-track-thumb-p generic function sets the value
controlling the behavior of item when the scroll box is dragged. If true, the
scroll box moves and the function scroll-bar-changed is called as the
user drags the scroll box. If nil, only an outline of the scroll box moves
and scrolling does not occur until the user releases the mouse button.

Arguments item A scroll-bar dialog item.
value A Boolean value. If item does not have a scroll box, the

value is nil.

scroll-bar-width [Generic function]

Syntax scroll-bar-width (item scroll-bar-dialog-item)

Description The scroll-bar-width generic function returns the width of item.

Argument item A scroll-bar dialog item.

set-scroll-bar-width [Generic function]

Syntax set-scroll-bar-width (item scroll-bar-dialog-item)
new-width
Chapter 5: Dialog Items and Dialogs 233

Description The set-scroll-bar-width generic function sets the width of item to
new-width.

Arguments item A scroll-bar dialog item.
new-value The new width of item.

scroll-bar-changed [Generic function]

Syntax scroll-bar-changed (scrollee t) (scroll-bar t)

Description The scroll-bar-changed generic function is called by the dialog-
item-action method for scroll-bar-dialog-item if the dialog-
item-action-function specified by the :dialog-item-action
initialization argument is nil. The scrollee argument is the value of
(scroll-bar-scrollee scroll-bar), as set by set-scroll-bar-
scrollee or the :scrollee initialization argument for scroll-bar. The
default method does nothing.

Writing a scroll-bar-changed method is an easy way to cause user mouse
clicks on a scroll-bar dialog item to update another view.

Arguments scrollee A scroll-bar scrollee; what is scrolled by the dialog item.
scroll-bar A scroll bar.

Sequence dialog items

A sequence dialog item is a table dialog item that displays the elements
of a sequence, either row by row or column by column. The following
class and functions govern the behavior of sequence dialog items.

sequence-dialog-item [Class name]

Description The sequence-dialog-item class is the class of sequence dialog items,
used for displaying the elements of a sequence. It is a subclass of table-
dialog-item. Each instance has an associated sequence. The elements of
the sequence are displayed in a table dialog item, in a single row or
column, or in multiple rows and columns. The table dialog item has
multiple rows and columns only if the length of the sequence is greater
than :sequence-wrap-length.
234 Macintosh Common Lisp Reference

initialize-instance [Generic function]

Syntax initialize-instance (item sequence-dialog-item) &rest
initargs

Description The initialize-instance primary method for sequence-dialog-
item initializes a sequence dialog item. (When instances are actually
made, the function used is make-instance, which calls initialize-
instance.)

Arguments item A sequence dialog item.
initargs A list of keywords and values used to initialize the

sequence. These are the initargs keywords in addition to
those used for table-dialog-item:

:table-sequence
The sequence to be associated with the table dialog item.
This argument must be specified by the user.

:sequence-order
This keyword determines whether the sequence will fill
the table dialog item row by row or column by column.
The value of this keyword should be either :vertical
or :horizontal. The default is :vertical.

:sequence-wrap-length
The number of elements allowed in a row or column
before the table dialog item wraps to the next row or
column. This number overrides the :table-
dimensions argument.

table-sequence [Generic function]

Syntax table-sequence (item sequence-dialog-item)

Description The table-sequence generic function returns the sequence associated
with the dialog item.

Argument item A sequence dialog item.

set-table-sequence [Generic function]

Syntax set-table-sequence (item sequence-dialog-item)
new-sequence
Chapter 5: Dialog Items and Dialogs 235

Description The set-table-sequence generic function sets the sequence associated
with the dialog item to new-sequence, resets the dimensions of the table
dialog item and the scroll bars, and redisplays the dialog item.

Arguments item A sequence dialog item.
new-sequence The sequence to be associated with the sequence dialog

item. The elements of this sequence are displayed in the
cells of the sequence dialog item.

cell-to-index [Generic function]

Syntax cell-to-index (item sequence-dialog-item) h &optional v

Description The cell-to-index generic function returns an index into the sequence
associated with the dialog item, corresponding to the cell whose indices in
the table are h and v. If there is no such cell, it returns nil.

This index is suitable for passing to the Common Lisp function elt.

Arguments item A sequence dialog item.
h Horizontal index.
v Vertical index. If the value of v is nil, h is assumed to

represent a point.

index-to-cell [Generic function]

Syntax index-to-cell (item sequence-dialog-item) index

Description The index-to-cell generic function returns a cell in the dialog item.
The cell corresponds to the indexth element of the table’s sequence.

Arguments item A sequence dialog item.
index An index to the sequence (zero based, as would be passed

to elt).

User-defined dialog items

You can easily add new classes of dialog items to the classes predefined
in Macintosh Common Lisp.
236 Macintosh Common Lisp Reference

New classes of dialog items may be specializations of the types of
dialog items listed in this chapter or specializations of the class
dialog-item. Functions that you may wish to define for classes
inheriting from dialog-item are listed in “Advanced dialog item
functions” on page 198.

For a commented example of how to implement your own class of
dialog item, see the file scrolling-fred-dialog-item.lisp in
the Library folder distributed with Macintosh Common Lisp.

Dialogs

A dialog may be either modal or modeless.

■ The user must exit from a modal dialog before performing any other
actions. The Print Options dialog box (Figure 5-3) is an example of a
modal dialog.

■ If the dialog is modeless, other actions can occur while the dialog is still
on the screen. The List Definitions dialog box (Figure 5-4) is an example
of a modeless dialog.

How the dialog is used determines whether it is modal or modeless.
Instance values do not determine its mode.

■ Figure 5-3 A modal dialog (Print Options on the Tools menu)

Window type :double-edge-box Editable text Radio buttons
in a cluster

Checkboxes Static text Default button Button
Chapter 5: Dialog Items and Dialogs 237

■ Figure 5-4 A modeless dialog (List Definitions on the Tools menu)

Modal dialogs

A modal dialog is activated by calling the modal–dialog generic
function on the dialog. The dialog is displayed and made the active
window. All subsequent user events are processed by the dialog; illegal
events produce a beep, and legal events cause the action of the selected
dialog item to be performed. The dialog continues to intercept all events
until return-from-modal-dialog is called. This macro causes the
dialog to be closed or hidden and supplies one or more values to be
returned from the call to modal-dialog. Modal dialogs may be
nested. Command-period can always be pressed to exit one or more
modal dialogs.

Some predefined modal dialogs are documented in “Simple turnkey
dialog boxes” on page 239.

Close box

Title

Vertical
scroll bar

Buttons
Radio buttons
in a cluster

Selected cell

Table with
vertical scroll bar
238 Macintosh Common Lisp Reference

Modeless dialogs

A modeless dialog is available for use whenever it is visible. Like any
window that is not active, a modeless dialog becomes the active
window when it is clicked. If a modeless dialog box is the active
window, then appropriate user events trigger the actions of its items.

Unless otherwise specified, all the text in a dialog (that is, the text of all
the items) appears in the window’s current font. The desired font
should be set before the dialog is made visible (using set-view-font
or the :view-font initialization argument). A special font may be
specified for certain dialog items; the rest of the items appear in the
window’s current font.

Simple turnkey dialog boxes

Macintosh Common Lisp provides four predesigned dialogs for use by
applications.

Three of the following dialog boxes provide facilities for dynamic
nonlocal exiting (Common Lisp throwing and catching). Clicking
Cancel causes a throw-cancel to the nearest catch-cancel. If this
throw is not caught, clicking Cancel causes a return to the top level (or
if it occurs during event processing, the execution of the interrupted
program resumes). Common Lisp throw and catch are described in
Common Lisp: The Language.

throw-cancel [Macro]

Syntax throw-cancel &optional value-form

Description The throw-cancel macro throws the value of value-form to the most
recent outstanding catch-cancel.

Argument value-formA value.

Example
? (catch-cancel

 (loop

 (throw-cancel 'foo)))

FOO
Chapter 5: Dialog Items and Dialogs 239

catch-cancel [Macro]

Syntax catch-cancel{form}*

Description The catch-cancel macro sets up a cancel catch and evaluates form. It
returns the value of the last form if there was no cancel throw. Otherwise,
it returns the symbol :cancel.

Argument form Zero or more Lisp forms.

message-dialog [Function]

Syntax message-dialog message &key :ok-text :size :position

Description The message-dialog function displays a dialog box containing the
string message and a single button. The function returns t when the user
clicks this button or presses Return or Enter.

Arguments message A string to be displayed as the message in the dialog box.
:ok-text The text to be displayed in the button. The default button

text is OK. If the text is too long, this string is clipped (that
is, the button is not enlarged to accommodate the longer
string). You can set the size with the :size keyword.

:size The size of the dialog box. The default size is
#@(335 100). A larger size provides more room for text.

:position The position of the dialog box. The default position is the
top center of the screen.

Example
? (message-dialog "Get along, little dogies"

 :ok-text "Giddyap!" :size #@(250 75))

T

Figure 5-5 shows a message dialog box.

■ Figure 5-5 A message dialog box
240 Macintosh Common Lisp Reference

The file icon-dialog-item.lisp in your Examples folder includes
a variation of this dialog box containing the standard Macintosh alert
icons Stop, Note, and Caution. The file graphic-items.lisp in your
Library folder shows how to implement generalized graphic items in
dialog boxes.

y-or-n-dialog [Function]

Syntax y-or-n-dialog message &key :size :position :yes-text
:no-text :cancel-text :help-spec

Description The y-or-n-dialog function displays a dialog box containing Yes, No,
and Cancel buttons. The display of the dialog box is modal.

If the user clicks the Yes button, the function returns t. If the user clicks the No
button, the function returns nil. If the user clicks the Cancel button, a throw-
cancel occurs. The default button is the Yes button.

Arguments message A string to be displayed as the message in the dialog box.
:size The size of the dialog box. The default size is

#@(318 145).
:position The position of the dialog box. The default position is the

top center of the screen.
:yes-text The text to be displayed in the Yes button. The default is

Yes. This is the default button of the dialog box.
:no-text The text to be displayed in the No button. The default text

is No.
:cancel-text

The text to be displayed in the Cancel button. The default
text is Cancel. If this argument is nil instead of a string,
no Cancel button will appear in the dialog box.

:help-spec A value describing the Balloon Help for the item. This
may be a string or one of a number of more complicated
specifications, which are documented in the file help-
manager.lisp in your Library folder. The default value
is nil.

Typing the initial character of the text of a button activates it. For
example, typing Y activates the Yes button, whereas typing N activates
the No button. In the following example, typing R activates the Cancel
button.

Example
? (y-or-n-dialog "Please turn my landlord into a frog."

 :cancel-text "Ribbet")

Figure 5-6 shows a yes-or-no dialog box.
Chapter 5: Dialog Items and Dialogs 241

■ Figure 5-6 A yes-or-no dialog box

get-string-from-user [Function]

Syntax get-string-from-user message &key :size :position
:initial-string :ok-text :cancel-text :modeless
:window-title :action-function
:allow-empty-strings

Description The get-string-from-user function displays a dialog prompting the
user for a string, which it returns. The display of the dialog can be modal
or modeless. If the value of :modeless is true, the dialog has a close box
and no cancel button. If it is nil, there is a cancel button and no close box.
If the cancel button is clicked, a throw-cancel occurs.

Arguments message A string to be displayed as the message in the dialog box.
:size The size of the dialog box. The default size is

#@(335 100).
:position The position of the dialog box. See the Human Interface

Guidelines: The Apple Desktop Interface for the default
position for this dialog box.

:initial-string
The default string to be displayed in the dialog box.

:ok-text The string to be displayed in the default button. If the user
clicks this button (or presses Return), get-string-
from-user returns the current string. The default value
is "OK".

:cancel-text
The string to be displayed in the Cancel button. The
cancel button is omitted if the value of:modeless is true.

:modeless An argument specifying whether the dialog box display is
modal or modeless. The default is nil, meaning that it is
modal.
242 Macintosh Common Lisp Reference

If :modeless is specified as true, the get-string-
from-user function returns the window it creates
immediately, without waiting for the user to interact with
it. The action-function is called when the user clicks
the default button or presses the Return or Enter key. The
default value is a function that returns the string.

:window-title
The title of the window. The default is "".

:action-function
If the :modeless argument is true, this argument should
be a function of one argument. It is called with the string
that the user types each time the user clicks the default
button or presses the Return or Enter key. The default
value is a function that returns the string.

:allow-empty-strings
An argument specifying whether the OK button is
enabled when the editable-text box contains no text. The
default value is nil, meaning that the user must type
something in the editable-text box to enable the OK
button.

Example
? (get-string-from-user "Enter a string."
 :initial-string "A string.")

? (get-string-from-user "Enter a string."

 :ok-text "Return it")

Figure 5-7 shows a dialog box that prompts the user for a string.

■ Figure 5-7 A get-string-from-user dialog box

select-item-from-list [Function]

Syntax select-item-from-list list &key :window-title
:table-print-function :selection-type
:action-function :modeless :default-button-text
Chapter 5: Dialog Items and Dialogs 243

Description The select-item-from-list function displays a dialog box
containing a default button and a table that contains the elements of list.
The function returns a list of the items selected by the user in reverse order,
or nil if the user chooses the default button. If the value of :modeless is
nil (the default), the dialog has a cancel button; if the user clicks Cancel,
a throw-cancel occurs.

Arguments list A list containing the items to be displayed in the table.
:window-title

The message displayed at the top of the dialog box.
:table-print-function

The print function used by the table in the dialog box. The
default is princ. You can use this argument to customize
the dialog box. For example, you could pass a print
function that prints only the first element of lists. (See the
documentation of this keyword in “Table dialog items”
on page 216.)

:selection-type
The type of selection allowed by the table. This should be
:single, :contiguous, or :disjoint. The default
value is :single.

:action-function
An argument specifying a function to call when the
default button is chosen. The function should take one
argument, a list of selected items. The default action-
function returns a list of selected items.

:modeless An argument specifying whether the dialog box display is
modal or modeless. The default is t, meaning that it is
modeless.
If :modeless is specified as true, the select-item-
from-list function returns the window it creates
immediately, without waiting for the user to interact with
it. The action-function is called when the user clicks
the default button or presses the Return or Enter key.

:default-button-text
A string to appear in the default button. The default value
is "OK".

To make a disjoint selection, you must hold down the Command key as
you click the selections.

Example
? (select-item-from-list '(cat dog bear)

 :window-title "Animals"

 :selection-type :disjoint)

; Click the items CAT and BEAR

(BEAR CAT)
244 Macintosh Common Lisp Reference

Figure 5-8 is a modal dialog box that displays a list of items.

■ Figure 5-8 A select-item-from-list dialog box

MCL forms relating to dialogs

The following functions, variables, and macros are useful in
programming dialogs (that is, to program instances of view or window
that contain dialog items). Remember that any view or window can
contain dialog items, which simply act as subviews within the view,
and that any generic function that acts on views or windows can act on
ones containing dialog items.

dialog [Class name]

Description The dialog class is included for compatibility with earlier versions of
Macintosh Common Lisp. No methods in Macintosh Common Lisp
version 2 are specialized on dialog, and it adds no slots.

Instances of view or its subclasses can contain a list of dialog items, as you see
in the following example, where dialog items appear in a window.

Example
? (setq dialog1 (make-instance 'window

 :window-type :document-with-zoom

 :window-title "Button Dialog"

 :view-position '(:TOP 60)

 :view-size #@(300 150)

 :view-font '("Chicago" 12 :SRCOR :PLAIN)
Chapter 5: Dialog Items and Dialogs 245

 :view-nick-name 'button-dialog

 :view-subviews

 (list

 (setq pearlbutton

 (make-dialog-item 'radio-button-dialog-item

 #@(15 28)

 #@(118 16)

 "Pearl Button"

 #'(lambda (item)

 item

 (print "How elegant!"))

 :view-nick-name 'pearlie

 :view-font '("Chicago" 0 :SRCCOPY :PLAIN)))

 (setq flashbutton

 (make-dialog-item 'radio-button-dialog-item

 #@(15 70)

 #@(217 16)

 "Flashy Plastic Button"

 #'(lambda (item)

 item

 (print "How tacky!"))

 :view-nick-name 'flash

 :view-font '("Chicago" 0 :SRCCOPY :SHADOW))))))

modal-dialog [Generic function]

Syntax modal-dialog (dialog window)&optional close-on-exit eventhook

Description The modal-dialog generic function displays dialog modally. That is, it
makes dialog the active window, displays it, and then intercepts
subsequent user events until a return-from-modal-dialog is
executed. The function returns the value(s) supplied by return-from-
modal-dialog.

If close-on-exit is true (the default), the window is closed on exit; otherwise, it is
hidden.

Closing the dialog box automatically prevents the accumulation of numerous
hidden windows during development. Modal dialog boxes may be nested.

◆u Note: The body of modal-dialog is unwind protected, and so any
throw past modal-dialog will close or hide the window, as
appropriate.
246 Macintosh Common Lisp Reference

Arguments window A window.
close-on-exit An argument determining whether the window should

be closed or simply hidden when the call to modal-
dialog returns. If this argument is true, the window is
closed. If it is false, the window is hidden but not closed.
The default is t.

eventhook A hook. The function modal-dialog binds
eventhook in order to intercept all event processing;
this hook is provided so that you can perform any special
event processing while the modal dialog is on the screen.
The value of eventhook should be a function of no
arguments, or a list of functions of no arguments.
Whenever modal-dialog looks for events, it calls the
functions in eventhook until one of them returns a non-nil
result. If all of them return nil, modal-dialog
processes events as it normally would. Otherwise, it
assumes that the hook function handled the event.
The variable *current-event* is bound to an event
record for the current event when each hook function is
called.
The default value of eventhook is nil.

return-from-modal-dialog [Macro]

Syntax return-from-modal-dialog values

Description The macro return-from-modal-dialog causes one or more values to
be returned from the most recent call to modal-dialog.

The dialog is hidden or closed according to the value of close-on-exit that
was passed to the call to modal-dialog. (Any throw past the modal-
dialog call also causes the dialog box to be hidden or closed.) If the
dialog box is only hidden, its contents remain intact and it continues to
take up memory until the window-close function is explicitly called.

Arguments values Any values. The following two values have special
meanings:

:closed If a dialog that is used modally has a close box and the
window is closed, return-from-modal-dialog is
called with the value :closed.

:cancel If the user selects the cancel button, return-from-
modal-dialog is called returning :cancel. The
function modal-dialog then performs a throw-
cancel.
Chapter 5: Dialog Items and Dialogs 247

modal-dialog-on-top [Variable]

Description The *modal-dialog-on-top* variable is true when a modal dialog is
the frontmost window. It is bound during the event processing done by
the modal-dialog function. Its value is used by the MCL window
system code to determine the behavior of floating windows. This value
should not be modified by the user, but can be used to determine whether
a modal dialog is being processed.

find-dialog-item [Generic function]

Syntax find-dialog-item (dialog dialog) string

Description The find-dialog-item generic function returns the first item in the
view whose dialog-item-text is the same as string (using equalp for
the comparison). The items are searched in the order in which they were
added to the view.

This function may yield unexpected results in views with editable-text items.
If the user types text identical to the text of another item, the editable-text item
may be returned instead of the desired item. For this reason, find-dialog-
item is best used during programming and debugging sessions.

To identify items in a dialog, you should use nicknames and the functions
view-named and find-named-sibling.

Arguments dialog A view or window containing dialog items.
string A string against which to compare the text of the dialog

items.
248 Macintosh Common Lisp Reference

249

Chapter 6:

Color

Contents

Color encoding in Macintosh Common Lisp / 250
MCL expressions governing color / 250
Operations on color windows / 257

Coloring user interface objects / 259
Part keywords / 260

Menu bar / 261
Menus / 261
Menu items / 261
Windows / 262
Dialog items / 262
Table dialog items / 262

This chapter describes the implementation of color in Macintosh Common
Lisp.

Macintosh Common Lisp includes high-level tools for handling colors. There
are functions for encoding and decoding colors (much as points are encoded
and decoded), and there are tools for setting the colors of user interface
components (windows, menus, and so on).

You should read this chapter before programming color into your application.

For a complete description of color operations on the Macintosh computer, see
Inside Macintosh.

Color encoding in Macintosh Common Lisp

The Macintosh stores colors as 48-bit red-green-blue (RGB) values, with
16 bits each for the red, green, and blue components. Because current
hardware generally supports a maximum of 24 bits of color, Macintosh
Common Lisp encodes colors as fixnums with 8 bits each for red, green,
and blue (and 5 bits unused). Therefore, creating a color encoding does
not allocate memory.

If your application requires more than 24 bits of color, you can redefine
the color encoding and decoding operations.

Although they are stored as 8-bit values when encoded in a color,
decoded components are expressed as 16-bit values. This allows
compatibility with some Macintosh tools (such as the Color Picker).
Unfortunately, it also means that the low 8 bits of each color component
are lost when the color is encoded and decoded. For example, consider
the following expressions, in which the red component of two colors
differs in the low 8 bits. Encoding and decoding loses information:
? (make-color 32256 14000 27323) ;;#$7E00=32256

8271466

? (eql 32256 (color-red 8271466))

T

? (make-color 32333 14000 27323) ;;#$7E4D=32333

8271466

? (equal 32333 (color-red 8271466))

NIL

To compare colors for equality as they are actually displayed on the
current display device, use the function real-color-equal.
? (real-color-equal (make-color 32256 14000 27323)

 (make-color 32333 14000 27323))

T

MCL expressions governing color

This section describes the MCL expressions that govern color.
250 Macintosh Common Lisp Reference

color-available [Variable]

Description The *color-available* variable returns a value indicating whether
the Macintosh computer on which Macintosh Common Lisp is running
supports Color QuickDraw.

If the value of this variable is non-nil, then the Macintosh computer supports the
Color QuickDraw command set. If 32-bit QuickDraw is available, its value is
32.

If the value of this variable is nil, then Color QuickDraw is not available.

This variable should never be changed by a program.

make-color [Function]

Syntax make-color red green blue

Description The make-color function returns an encoded color, with components
red, green, and blue. The components should be in the range 0–65535. Each
component is stored with an accuracy of ±255.

Arguments red The red component of the color. This should be an integer
in the range 0–65535.

green The green component of the color. This should be an
integer in the range 0–65535.

blue The blue component of the color. This should be an
integer in the range 0–65535.

Example

Note that the color components change value as they are encoded and
decoded.
? (make-color 32333 14000 27323)
8271466
? (color-values 8271466)
32256
13824
27136

color-red [Function]

Syntax color-red color

Description The color-red function returns the red component of color as an integer
in the range 0–65535.
Chapter 6: Color 251

Argument color A color.

Example
? (color-red 8271466)
32256

? (color-red *purple-color*)

17920

color-green [Function]

Syntax color-green color

Description The color-green function returns the green component of color as an
integer in the range 0–65535.

Argument color A color.

Example
? (color-green 8271466)
13824

? (color-green *purple-color*)

0

color-blue [Function]

Syntax color-blue color

Description The color-blue function returns the blue component of color as an
integer in the range 0–65535.

Argument color A color.

Example
? (color-blue 8271466)
27136

? (color-blue *purple-color*)

42240

color-values [Function]

Syntax color-values color
252 Macintosh Common Lisp Reference

Description The color-values function returns three values corresponding to the
red, green, and blue components of color.

Argument color A color.

Example
? (color-values 8271466)
32256
13824
27136

real-color-equal [Function]

Syntax real-color-equal color1 color2

Description The real-color-equal function returns true if color1 and color2 are
displayed as the same color on the current display device. Otherwise it
returns false.

This function may return different results for the same arguments, depending
on the current configuration of the computer running Macintosh Common
Lisp. For information on the algorithm used to map RGB colors into Macintosh
color-table entries, see Inside Macintosh.

Arguments color1 A color.
color2 Another color.

Example
? (real-color-equal (make-color 32256 14000 27323)

 (make-color 32333 14000 27323))

T

color-to-rgb [Function]

Syntax color-to-rgb color &optional rgb

Description The color-to-rgb function returns a Macintosh RGB record describing
the same color as color. RGB records are allocated on the Macintosh heap
and are therefore not subject to garbage collection. They must be explicitly
deallocated with a call to dispose-record or #_DisposPtr. For this
reason, it is recommended that the macro with-rgb be used instead
whenever possible.

Most Color QuickDraw traps receive colors in the form of RGB records.

Arguments color A color.
Chapter 6: Color 253

rgb A macptr to an RGB record. The record may be combined
with color to produce the returned record. (For
information on macptrs see Chapter 15: Low-Level OS
Interface.)

Example
? (color-to-rgb 8271466)
#<A Mac Zone-Pointer Size 6 #x611930>
? (print-record * :rgbcolor)
#<Record :RGBCOLOR :RED 32256 :GREEN 13824 :BLUE 27136>

But it is preferable to use with-rgb:
? (let ((color 8271466))

 (when *color-available*

 (with-rgb (rec color)

 (print-record rec :rgbcolor))))

#<Record :RGBCOLOR :RED 32256 :GREEN 13824 :BLUE 27136>

rgb-to-color [Function]

Syntax rgb-to-color rgb-record

Description Given an RGB record, the rgb-to-color function returns a
corresponding color encoded as an integer.

Most Color QuickDraw traps receive colors in the form of RGB records.

Argument rgb-record An RGB color record stored on the Macintosh heap.

Example
? (make-record :rgbcolor

 :red 1000

 :green 2000

 :blue 3000)

#<A Mac Zone-Pointer Size 6 #x611940>

? (rgb-to-color *) ;*=the last value returned

198411

? (color-values *)

768

1792

2816
254 Macintosh Common Lisp Reference

with-rgb [Macro]

Syntax with-rgb (variable color) {form}*

Description The with-rgb macro evaluates form with variable bound to an RGB record
corresponding to the color color. When the body of the macro exits, the
RGB record is automatically disposed of.

Most Color QuickDraw traps receive colors in the form of RGB records.

Arguments variable A symbol bound to an RGB record for the duration of the
macro. This position in the macro call is not evaluated.

color A color encoded as an integer. This position in the macro
call is evaluated.

form Zero or more forms to be executed with variable bound to
an RGB record containing color.

Example

This macro is useful because it saves the trouble of having to allocate
RGB records explicitly. (Remember, RGB records are allocated on the
Macintosh heap, and so they are not subject to garbage collection.)
? (defmethod set-fore-color ((window window) color)

 (when *color-available*

 (with-rgb (rec color)

 (with-port (wptr window)

 (#_rgbforecolor :ptr rec)))))

#<Method SET-FORE-COLOR (WINDOW T)>

user-pick-color [Function]

Syntax user-pick-color &key :color :prompt :position

Description The user-pick-color function displays the standard Macintosh Color
Picker at :position, set to color :color, with prompt :prompt. It
returns the selected color if the user clicks OK or throws to the tag
:cancel if the user clicks Cancel.

Arguments :color The default color to bring up in the dialog box. The
default is *black-color*.

:prompt The prompt to display in the dialog box. The default is
"Pick a color".

:position The position of the Color Picker on screen. The default is
calculated by Macintosh Common Lisp.
Chapter 6: Color 255

black-color [Variable]

white-color [Variable]

pink-color [Variable]

red-color [Variable]

orange-color [Variable]

yellow-color [Variable]

green-color [Variable]

dark-green-color [Variable]

light-blue-color [Variable]

blue-color [Variable]

purple-color [Variable]

brown-color [Variable]

tan-color [Variable]

light-gray-color [Variable]

gray-color [Variable]

dark-gray-color [Variable]

Description These variables contain colors corresponding to the 16 colors available by
default on a Macintosh computer with a 16-color monitor.

black-rgb [Variable]

white-rgb [Variable]

Description These variables contain RGB records for black and white.
256 Macintosh Common Lisp Reference

Operations on color windows

The following operations are used to set the foreground and
background colors of windows. If the computer display does not
support colors, the colors do not appear. However, they remain
associated with the windows, and if the same window is moved to a
color monitor, they appear in the proper colors.

Windows created with an omitted or null :color-p initarg can
display only eight colors. Specify :color-p as true to use the full range
of colors supported by the hardware.

set-fore-color [Generic function]

Syntax set-fore-color (window window) color

Description The set-fore-color generic function sets the foreground color of the
window to color and returns nil. Future drawing in the window appears
in this color; when the window is redrawn, all drawing appears in this
color.

Arguments window A window.
color A color.

Example
? (setq mywin (make-instance 'fred-window))

#<FRED-WINDOW "New" #x4BEE99>

? (set-fore-color * *blue-color*)

NIL

set-back-color [Generic function]

Syntax set-back-color (window window) color &optional redisplay-p

Description The set-back-color generic function sets the background color of the
window to color and returns nil.

Arguments window A window.
color A color.
redisplay-p If the value of this is true (the default), this function

invalidates the window, forcing a redrawing. The
displayed background color does not change unless the
window is redrawn.
Chapter 6: Color 257

Example
? (set-back-color mywin *yellow-color* t)

NIL

with-fore-color [Macro]

Syntax with-fore-color color {form}*

Description The with-fore-color macro sets the foreground color of the window
to color and executes form. When the body of the macro exits, the old
foreground color is restored.

This macro should be used only with a port set. That is, it should be used
within the dynamic extent of a call to with-port or with-focused-view.

If Color QuickDraw is not present or color is nil, the color is not set.

Arguments color A color.
form Zero or more forms to be executed with the foreground

color set.

Example
? (setq my-new-win (make-instance 'fred-window))

#<FRED-WINDOW "New" #x4D1399>

? (defmethod type-in-color ((view view) color string)

 (with-focused-view view

 (with-fore-color color

 (princ (format nil "~s" string) view))))

#<STANDARD-METHOD TYPE-IN-COLOR (VIEW T T)>

? (type-in-color my-new-win *blue-color* "Hi there")

NIL

with-back-color [Macro]

Syntax with-back-color color {form}*

Description The with-back-color macro sets the background color of the window
to color and executes form. When the body of the macro exits, the old
background color is restored.

This macro should be used only with a port set. That is, it should be used
within the dynamic extent of a call to with-port or with-focused-view.

If Color QuickDraw is not present or color is nil, the color is not set.
Arguments color A color.
258 Macintosh Common Lisp Reference

form Zero or more forms to be executed with the background
color set.

Coloring user interface objects

Methods on the following functions are used for setting the colors of
user interface objects such as windows, dialog items, menus, and menu
items. This section assumes some familiarity with the use of these
classes.

For each class, a set of keywords identifies the parts that can be colored.
The keywords for the different classes are given in the next section,
“Part Keywords.”

If a user defines a new class of dialog items, the generic function view-
draw-contents can be defined to use the colors of the parts of the
dialog item.

part-color [Generic function]

Syntax part-color object part

Description The part-color generic function returns the color of the part of object
indicated by part.

Arguments object A user interface object. Built-in methods are defined for
window, dialog-item, menubar, menu, and menu-
item.

part A keyword associated with the class of object. The part
keywords are described in the next section.

set-part-color [Generic function]

Syntax set-part-color object part color

Description The set-part-color generic function sets the part of object indicated by
part to color and returns color, encoded as an integer. If color is nil, the
default color is restored.

Arguments object A user interface object. Built-in methods are defined for
window, dialog-item, menubar, menu, and menu-
item.
Chapter 6: Color 259

part A keyword associated with the class of object. The part
keywords are described in the next section.

color A color.

part-color-list [Generic function]

Syntax part-color-list object

Description The part-color-list generic function returns a property list of
keywords and colors for all the colored components of object. The same
keywords apply as for part-color. Components whose color has not
been set are not included.

Argument object A user interface object. Built-in methods are defined for
window, dialog-item, menubar, menu, and menu-
item.

Example

Here is an example of the use of part keywords with these functions:
? (setf w (make-instance 'window))

#<WINDOW "Untitled" #x3E9229>

? (part-color w :content)

NIL

? (set-part-color w :content *blue-color*)

212

? (part-color w :content)

212

? (part-color-list w)

(:CONTENT 212)

Part keywords

You can perform color operations on six objects: menu bars, menus,
menu items, windows, dialog items, and table dialog items. This section
presents the keywords that identify which parts of certain objects can
be colored.
260 Macintosh Common Lisp Reference

Menu bar

To perform color operations on the menu bar, use the value of the
variable *menubar*, which contains the one instance of the class
menubar. You can color the menu bar’s titles and its background using
the following keywords:

:default-menu-title
The default color used for the titles of menus in the
menu bar.

:default-menu-background
The default color used for the background of the
menus in the menu bar.

:default-menu-item-title
The default color used for the titles of menu items in
the menu bar.

:menubar The background color of the menu bar.

Menus

You can color three parts of menus.

:menu-title
The color used for the title of the menu.

:menu-background
The color used for the background of the menu.

:default-menu-item-title
The default color used for the titles of menu items in
the menu.

Menu items

You can color three parts of menu items.

:item-title
The color used for the title of the menu item.

:item-key
The color used for the command key of the menu item.

:item-mark
The color used for the check mark beside the menu
item.
Chapter 6: Color 261

Windows

The window part keywords correspond to different features in
different types of windows, because the Macintosh Toolbox uses
window color records differently for different window types. You can
color windows using these keywords.

:content The color used for the background of the
window.

:frame The color used for the outline of the window
and the title bar of :tool windows.

:text The color used for the title of :document
windows.

:hilite The color used for the lines in the title bar of
:document windows.

:title-bar
The color used for the background of the title bar in
:document windows and the title in :tool windows.

Dialog items

These part keywords work for built-in dialog items (although not all
dialog items have all of these features). You may wish to use the part
colors in the view-draw-contents method for dialog item classes
you define.

:frame The color used for the outline of the dialog
item.

:text The color used for the text of the dialog item.

:body The color used for the body of the dialog item.

:thumb The color used for the scroll box of the dialog
item. (Scroll bars are the only built-in dialog item that
have a scroll box.)

Table dialog items

The color of individual table cells can be set and accessed. Simply use
the cell coordinates as the part keyword. For example, (set-part-
color my-table #@(0 0) 212) sets the cell in the upper-left corner
of the table to blue (which is encoded as 212).

These colors are used only by the default draw-cell-contents
function. If you define your own draw-cell-contents, you must
use part-color to access and install the color when you draw the
cell.;
262 Macintosh Common Lisp Reference

263

Chapter 7:

The Interface Toolkit

Contents

The Interface Toolkit / 264
Loading the Interface Toolkit / 264
Editing menus with the Interface Toolkit / 265

Using the menu editing functionality / 265
Creating a new menu bar: Add New Menubar / 267
Getting back to the default menu bar: Rotate Menubars / 267
Deleting a menu bar: Delete Menubar / 268
Creating and editing menus: Add Menu / 268
Creating menu items / 268
Editing menu items / 269
Saving a menu bar / 270
Editing menu bar source code / 270

Editing dialogs with the Interface Toolkit / 271
Using the dialog-designing functionality / 272
Dialog-designing menu items / 272
Creating dialog boxes / 273
Adding dialog items / 275
Editing dialog items / 276

The Interface Toolkit is an application built on top of Macintosh Common Lisp.
It is provided as source code in the Interface Tools folder distributed with
Macintosh Common Lisp; you can examine and modify it for your own use. It
is also useful for building interfaces, and that aspect of it is documented here.

The Interface Toolkit does two things: edits menus and menu bars, and creates
and edits dialog boxes. In addition, it prints source code for everything it
creates.

You do not need to be familiar with the MCL implementation of menus and
dialog boxes before using the Interface Toolkit. However, you should read
Chapter 3: Menus, Chapter 4: Views and Windows, and Chapter 5: Dialog
Items and Dialogs before working with the source code generated by the
interface toolkit.

The Interface Toolkit

The Interface Toolkit, built on top of Macintosh Common Lisp, is an
example of a simple MCL application.

It does the following:

■ It creates menu bars and populates them with menus.

■ It creates and edits dialogs and dialog items.

■ For everything it prototypes, it is able to print source code to a file.
When you have developed something in the Interface Toolkit, you can
save your work to a Fred file, then edit it.

The Interface Toolkit is supplied as source code in the Interface Tools
folder. You are free to examine and modify this source code, to use this
source code in developing your own applications, and to include it, as
is or modified, within your applications.

Loading the Interface Toolkit

Perform these steps to load the Interface Toolkit.

1. Open the file make-ift.lisp and execute its contents.

In the Listener, choose Open from the File menu.

Select the file make-ift.lisp from the Interface Tools folder.

Execute its contents by choosing Execute Buffer from the Lisp
menu.

2. Type the following to the Listener, or execute it in a Fred
window:

(ift::load-ift)

This function loads the files that make up the Interface Toolkit.

Now your menu bar has one additional menu, the Design menu (Figure
7-1).
264 Macintosh Common Lisp Reference

■ Figure 7-1 The Interface Toolkit menu on the menu bar

Editing menus with the Interface Toolkit

In the Interface Toolkit you can edit the default menu bar or another
menu bar to contain any menus you want. You can add menus to a
menu bar and remove them. In the same way, you can add menu items
to a menu or remove menu items from a menu. You can use menu items
from the menus on the standard menu bar or make your own menu
items.

You edit both menus and menu items by double-clicking them and
specifying their attributes in an edit window.

More than one menu bar may be active, and you may edit more than
one menu bar at once. You can cut and paste menus among menu bars,
including the default menu bar, just as you would cut and paste text
from one buffer to another.

At any time, you can generate source code for a menu or for the entire
menu bar.

Using the menu editing functionality

After you load the Interface Toolkit, choose Edit Menubar, the first
menu item on the Design menu (Figure 7-2). With this menu item you
will edit menus and the menu bar.
Chapter 7: The Interface Toolkit 265

■ Figure 7-2 Choosing Edit Menubar from the Design menu

When you choose Edit Menubar from the Design menu, the Interface
Toolkit creates two windows, a small floating window and an editor
window titled “Menubar Editor”.

The floating window contains the standard editor commands Cut,
Copy, Paste, and Clear. You can use this floating window to cut, copy,
paste, and clear in situations where you don’t have a working Edit
menu.

The Menubar Editor window, shown in Figure 7-3, contains an editable
list of the items in the current menu bar.

■ Figure 7-3 The Menubar Editor window

The Menubar Editor window also contains the options listed in Table 7-
1.
266 Macintosh Common Lisp Reference

■ Table 7-1 Menubar Editor window options

Option Effect

Creating a new menu bar: Add New Menubar

To create a new menu bar, choose Add New Menubar from the
Menubar Editor window. A new menu bar appears in the Menubar
Editor window and at the top of the screen. This new menu bar initially
contains only the Apple menu.

You can create any number of new menu bars.

Getting back to the default menu bar: Rotate Menubars

To get to another menu bar or back to the default menu bar, choose
Rotate Menubars from the Menubar Editor window.

Add Menu Adds a new, empty menu named “Untitled” to the current menu bar
(the one visible in the Menubar Editor’s editable list and at the top of the
screen).

Rotate Menubars If more than one menu bar is active, makes the next menu bar the current
menu bar. If only one menu bar is active, this command does nothing.

Add New Menubar Adds a new, empty menu bar named “Untitled” to the active menu bars.
The new menu bar initially contains only the Apple menu.

Delete Menubar Deletes the current menu bar. The next active menu bar becomes the
current menu bar.

Menubar Colors Sets the colors of the menu bar.

Print Menubar Source Creates a new Fred window containing the source code for the current
menu bar.
Chapter 7: The Interface Toolkit 267

Deleting a menu bar: Delete Menubar

To delete a menu bar, choose Delete Menubar from the Menubar Editor
window. This command deletes the currently installed menu bar and
removes it from the rotation.

Creating and editing menus: Add Menu

To create a menu, choose Add Menu from the Menubar Editor. The
name of the new menu, “Untitled”, appears in the editable list and in
the menu bar at the top of the screen.

You can change the name of any menu by choosing it and editing its
text. To edit a menu, double-click its name in the list.

Creating menu items

Double-clicking the name of a menu creates a new Menu Editor
window for menu items, as shown in Figure 7-4. This window contains
an editable list of menu items, which will be empty if the menu is new,
and the options listed in Table 7-2.

■ Figure 7-4 A Menu Editor window showing a menu with no items
268 Macintosh Common Lisp Reference

■ Table 7-2 Menu editing options

Option Effect

Editing menu items

When you add menu items to a menu, you can edit them by double-
clicking them, as in Figure 7-5.

Double-clicking a menu item lets you set the features listed in Table 7-3.

■ Figure 7-5 Editing items in the Menu Editor

Add Menu Item Adds a new, empty menu item named “Untitled” to the current menu.
There are three classes of menu items: menu-item, a menu item that
represents a command; menu, a menu item that opens a menu; and
window-menu-item, a window menu item. (See Chapter 3: Menus.)

The menu-item class defaults to menu-item. To change it, edit the
menu item source code.

You can add further classes by editing the Interface Toolkit source code.

Menu Colors Sets the colors for parts of the menu.

Print Menu Source Opens a new Fred window and prints the source code for the menu to it.
Chapter 7: The Interface Toolkit 269

■ Table 7-3 Menu item editing options

Option Effect

Saving a menu bar

When you are satisfied with your menu bar, choose Print Menu Source
to create source code. Edit your source code as you like, then save it to
a file for future use.

The definitions of some menu items in the standard menu bar must be
edited. See the next section.

Editing menu bar source code

The Menu Editor is able to print source code for a menu item only if it
has access to the source code of the action function of the menu item. If
it doesn’t, it puts "Can't find definition" in the place of the
action function source code. You can then edit the code, putting in the
real action function definition.

The source code for an action function is available if it was entered
directly
from the menu editor or loaded from a source file with *save-
definitions*
set to t.

It is not available if the menu was loaded from a fasl file unless the
fasl file was compiled with a true value for the :save-
definitions argument to compile-file.

Command key Specifies the command key, if any, associated with the menu item.

Disabled Specifies whether the menu item is disabled. The default is nil.

Check Mark Specifies whether the menu item has a check mark beside it. The default
is nil.

Menu Item Action Brings up a Fred window in which you can write or edit code for the
menu item action.

Menu Item Colors Sets the menu item colors.
270 Macintosh Common Lisp Reference

The source code for the action functions of some of the built-in menu
items is not available. For example, if you print the source code for the
File menu, you need to edit the definition of the New menu item. The
definition should make an instance of whatever kind of window you
want New to use; for example, if New opens a Fred window, as it does
in Macintosh Common Lisp, the definition you add is (make-
instance 'fred-window).

You should also delete INTERFACE-TOOLS::W from the argument list
of the anonymous function.

If you are customizing your MCL menu bar, you may also need to edit
the definitions in Table 7-4.

■ Table 7-4 Menu items and corresponding MCL codes

Menu item MCL code

Editing dialogs with the Interface Toolkit

The Interface Toolkit includes a quick interface designer for dialogs.
With it you can create a blank dialog box with any set of attributes you
want. Then, from a palette of buttons, radio buttons, checkboxes,
editable-text dialog items, tables, and static text, you can drag in dialog
items. You can edit them by double-clicking them. In an edit window
you can specify the attributes of the dialog item, such as color, font, and
associated action.

New Appropriate code to make an instance of the desired type of window.

Load File (load (choose-file-dialog))

Compile File (compile-file (choose-file-dialog:button-string "Compile"))

Break (break)

Restarts (ccl::choose-restart)

Edit Menubar (interface-tools::edit-menubar)
Chapter 7: The Interface Toolkit 271

◆ Note: You can edit the palette to add your own items by editing its
source code in the file item-defs.lisp, in the Interface Tools folder.

At any time you can generate source code for the dialog box and its
items.

◆ Note: When Design Dialogs is checked on the Interface Toolkit’s special
Design menu, all dialog boxes are editable, including the Search/
Replace dialog box, the Environment dialog box, and so on. To use
dialog boxes rather than edit them, choose Use Dialogs from the Design
menu. (If you are in the middle of editing a dialog box, your edits will
not disappear; the box will simply become usable.)

Using the dialog-designing functionality

First load the Interface Toolkit according to the directions in “Loading
the Interface Toolkit” on page 264.

You see a new menu bar at the top of your screen, containing a Design
menu. It should look like the one in Figure 7-2.

Dialog-designing menu items

The Interface Toolkit menu contains eight items, seven of which relate
to dialog design (see Table 7-5).
272 Macintosh Common Lisp Reference

■ Table 7-5 Dialog design menu items

Option Effect

Creating dialog boxes

To create a dialog box, first make sure that a check appears next to
Design Dialogs. Then choose New Dialog from the Design menu. The
system displays a dialog box (Figure 7-6) in which you select the type
and attributes of the dialog box you want to create.

Edit Menubar Creates an editor window for the menu bar. This functionality is
discussed in “Editing menus with the Interface Toolkit” on page 265.

Use Dialogs Allows you to use dialog boxes in your MCL environment. Choosing
this menu item automatically disables Design Dialogs, discussed next.
These two menu items are the on/off stages of a single toggle. Turning
on one turns off the other. When you first load the Dialog Designer, Use
Dialogs is enabled. When you are using ordinary MCL dialogs, make
sure Use Dialogs is enabled.

Design Dialogs Allows you to design dialogs in your MCL environment. Choosing this
menu item automatically disables Use Dialogs and makes all dialogs
editable, but not usable. (As long as you are in the Interface Toolkit, you
can switch back and forth between these modes at will.)

New Dialog... Brings up a dialog box in which you can specify the type and attributes
of a new dialog box. This menu item is discussed in the next section,
“Creating Dialog Boxes.”

Add Horizontal Guide Adds a dotted horizontal guideline to the dialog box. This guideline
becomes invisible when you choose Use Dialogs. This menu item is
enabled only when you are creating or editing a dialog box.

Add Vertical Guide Adds a dotted vertical guideline to the dialog window. This guideline
becomes invisible when you choose Use Dialogs. This menu item is
enabled only when you are creating or editing a dialog box.

Edit Dialog Allows you to specify the title and position of the window that contains
the dialog items. This menu item is enabled only when you are creating
or editing a dialog box.
Chapter 7: The Interface Toolkit 273

■ Figure 7-6 New Dialog dialog box

Table 7-6 lists the seven possible types of dialog.

■ Table 7-6 Seven types of dialog

Option Effect

Two attributes are available (see Table 7-7).

Document This is the default. Creates a dialog box with square corners and the title
“Untitled Dialog.” By default, a document dialog box includes a close
box.

Document with Grow Creates a document dialog box with a size box.

Document with Zoom Creates a document dialog box with a size box and a zoom box.

Tool Creates a dialog box with rounded edges, a solid title bar, and the title
“Untitled Dialog.” By default, it also includes a close box.

Single Edge Box Creates a box with square corners, no title, and no close box. (You must
put a close button within a dialog of this type.) Its edge is a single line.

Double Edge Box Creates a box with square corners, no title, and no close box. Its edge is
a double line.

Shadow Edge Box Creates a box with square corners, no title, and no close box. Its edge is
shadowed.
274 Macintosh Common Lisp Reference

■ Table 7-7 Two attributes of dialog boxes

Option Effect

Adding dialog items

Whenever you change from the Use Dialogs menu item to the Design
Dialogs menu item, you open a palette of dialog items. If you don’t see
this palette, choose Use Dialogs, then choose Design Dialogs again. The
palette will appear.

The palette contains one of each type of dialog item: a table, a radio
button, a checkbox, a field of editable text, some static text, and a
button. In Figure 7-7, the palette appears to the right of the new dialog
box.

Add dialog items to your dialog box by dragging them from the palette.
The original dialog item will remain on the palette, and a copy with the
title “Untitled” will appear in your dialog box. Figure 7-7 shows an
editable-text dialog item being dragged from the palette to the dialog.

■ Figure 7-7 Dragging an editable-text dialog item into an untitled dialog box

Include Close Box Includes a close box in your dialog window. The default value is true.

Color Window Builds your dialog on top of a Macintosh CWindowRecord record.
Chapter 7: The Interface Toolkit 275

Place dialog items in the dialog box by dragging them. If you want to
move the item only vertically or only horizontally, hold down Shift
when you drag the box.

To help you place the dialog items, you can add vertical or horizontal
guidelines to your dialog box. Click Add Vertical Guide or Add
Horizontal Guide in the Design menu. You can select and drag a guide
to place it. If you place a dialog item with an edge near a guide, it
automatically aligns with the guide.

To resize the display space of any item, first click the item once. Handles
(small black boxes) appear around the item. Click the pointer on any of
these handles, then drag the item by its handle until you are satisfied
with the size.

Editing dialog items

Edit a dialog item by double-clicking it. A dialog box opens. The dialog
box varies with the kind of dialog item being edited. Figure 7-8 shows
a typical example.

■ Figure 7-8 Edit Dialog Items dialog box

Table 7-8 lists the options available for editing dialog items.
276 Macintosh Common Lisp Reference

■ Table 7-8 Editable options in dialog items

Option Effect

Most dialog item subclasses also allow you to edit special parameters
associated with the subclass (see Table 7-9).

Dialog-item-text Indicates dialog-item-text, the label or text the user sees. After you
edit this text, you may have to change the size of the dialog item.

Enabled/Disabled Sets whether the item is enabled or disabled. The default is enabled.

Set Item Action Sets the code for the action performed by the dialog item.

Set Item Font Sets the item font. The default is Chicago 12.

Set Item Name Associates a nickname with the item.

Set Color Colors one or more parts of the dialog item. You can color the frame,
text, body, and thumb.

Print Item Source Prints the dialog item source code to a new Fred window.
Chapter 7: The Interface Toolkit 277

■ Table 7-9 Editable options in subclasses of dialog items

Subclass and option Effect

Radio buttons

 Radio Button
 Pushed

Indicates whether or not the radio button is selected when the dialog box
is first displayed. The default is nil.

 Set Item cluster Allows you to move the radio button to a new cluster. Radio button
clusters are numbered sequentially, starting with 0. To set the button’s
cluster, enter a new number.

Buttons

 Default Button Indicates whether this is the default button. The default value is nil.

Edit-text dialog items

 Allow Returns Indicates whether carriage returns are allowed in the Edit Text field. The
default value is nil.

 Allow Tabs Indicates whether pressing the Tab key inserts a tab in the buffer or
selects the next key handler in the dialog box. The default, nil, selects
the next key handler.

 Draw Outline Indicates whether an outline is drawn around the dialog item.

Checkboxes

 Checkbox Checked Indicates whether or not the checkbox is checked. The default value is
nil.

Tables

 Set Cell Size Allows you to set a new default size for table cells.

 Horizontal Scroll Bar Adds a horizontal scroll bar to the table.

 Vertical Scroll Bar Adds a vertical scroll bar to the table.

 Set Table Sequence Sets the sequence in which items appear in the table.

 Set Wrap Length Sets the maximum length a line of text can attain before wrapping to the
next line occurs. The default value is nil; that is, lines are not wrapped.

 Orientation Determines whether the orientation of the table is vertical or horizontal.
The default is vertical.
278 Macintosh Common Lisp Reference

279

Chapter 8:

File System Interface

Contents

Filenames, physical pathnames, logical pathnames, and namestrings / 280
Changes from earlier versions of Macintosh Common Lisp / 280
Printing and reading pathnames / 281

Pathname structure / 282
Macintosh physical pathnames / 283
Common Lisp logical pathnames / 283
Defining logical hosts / 284
Ambiguities in physical and logical pathnames / 284
More on namestrings and pathnames / 285

Creating and testing pathnames / 285
Parsing namestrings into pathnames / 288
The pathname escape character / 289

Loading files / 291
Macintosh default directories / 293
Structured directories / 295
Wildcards / 298
File and directory manipulation / 299

File operations / 302
Volume operations / 306

User interface / 308
Logical directory names / 310

This chapter describes filename specification and the functions for
manipulating the Macintosh File System. It does not document all Common
Lisp file system features, but refers to Common Lisp: The Language where
appropriate.

You should read this chapter to familiarize yourself with the specification of
filenames in Macintosh Common Lisp. It is particularly important if you will
deal with other file systems and must translate between them and the file
system of Macintosh Common Lisp.

You should be familiar with Chapter 23 of the second edition of Common Lisp:
The Language, which discusses the Common Lisp file system features.

Filenames, physical pathnames, logical pathnames, and namestrings

The file system interface provides a way of dealing with references to
file systems when code may be running on multiple platforms. MCL
code must deal with the file system requirements of the Macintosh
Operating System and, if the code is meant to be ported, with those of
any other operating system on which it is intended to run. Macintosh
Common Lisp specifies filenames by means of pathnames, which can
be specified as namestrings.

A filename is a means of specifying a particular file or directory in a file
system. You can represent a filename as either a Lisp object (a
pathname) or a string (a namestring). Internally, Macintosh Common
Lisp always uses pathnames and converts namestrings to pathnames
before using them.

■ A pathname is a structured Lisp object. It represents a filename as a set
of components that can be manipulated in an implementation-
independent way. A pathname is not necessarily the name of a file; it is
a specification, perhaps partial, of how to access a file.

A single filename may be represented by two or more quite different
pathnames, and the existence of a pathname does not guarantee that
the file it specifies exists.

■ There are two kinds of pathnames:

 A physical pathname indicates the physical components of the
pathname.

 A logical pathname structure has one or more logical components.
Logical components may be translated to their physical
counterparts.

■ A namestring is a string that names a file in any one of three syntaxes:
Macintosh physical syntax, Common Lisp logical pathname syntax, or
MCL logical directory syntax. (MCL logical directory syntax is now
deprecated and is likely to disappear in a future release.)

The following sections discuss Macintosh physical syntax and
Common Lisp logical pathname syntax. MCL logical directory syntax
is described in “Logical directory names” on page 310.

Changes from earlier versions of Macintosh Common Lisp

If you have used versions of Macintosh Common Lisp prior to version
2.0, you should note an important change in the implementation of the
file system.
280 Macintosh Common Lisp Reference

As of version 2.0, Macintosh Common Lisp version uses logical hosts,
bringing it into compliance with the file system interface design
described in Chapter 23 of Common Lisp: The Language. This can be
somewhat confusing, since the old MCL-specific system of logical
directories is very similar to the new Common Lisp system of logical
hosts. Under earlier versions of Macintosh Common Lisp, "CCL" (for
example) was defined as a logical directory, and you could test for the
presence of a file like this:
? (probe-file "ccl;MCL help")

In Macintosh Common Lisp version 2, "CCL" is defined as a logical
host, and the syntax is very slightly different:
? (probe-file "ccl:MCL help")

If your application requires it, you can reproduce the old behavior by
defining the logical directory yourself:
? (def-logical-directory "ccl"

(full-pathname "ccl:"))

◆ Note: The MCL functionality previously called “logical pathnames”
refers to the MCL-specific system of logical directories and is now
called “logical directory names.” The logical pathname functionality
discussed in this chapter refers to the file system interface design
described in Chapter 23 of Common Lisp: The Language.

Printing and reading pathnames

Common Lisp now specifies that pathnames be printed and read using
the #P syntax.

In Macintosh Common Lisp, pathnames are printed using the Common
Lisp #P reader macro (see Common Lisp: The Language, pages 537 and
556), as shown in this example:
? (make-pathname :directory "hd" :name "foo")
#P"hd:foo"

Macintosh Common Lisp also has a numeric argument that specifies
one of four possible unusual conditions in the pathname. .

 #1P means that the type is :unspecific.

 #2P means that the name is "".

 #3P means that the type is :unspecific and the name is "".

 #4P means that the namestring represents a logical pathname.

All other numeric arguments are illegal.
Chapter 8: File System Interface 281

With this convention, Macintosh Common Lisp avoids the potential
loss of information when converting between a pathname and a
namestring:

(make-pathname :name "foo" :type "lisp")

#P"foo.lisp"

(make-pathname :name "foo" :type nil)

#P"foo"

(make-pathname :name "foo" :type :unspecific)

#1P"foo"

(make-pathname :name nil :type "lisp")

#P".lisp"

(make-pathname :name "" :type "lisp")

#2P".lisp"

(make-pathname :name nil :type nil)

#P""

(make-pathname :name nil :type :unspecific)

#1P""

(make-pathname :name "" :type nil)

#2P""

(make-pathname :name "" :type :unspecific)

#3P""

◆ Note: The numeric argument #nP is not a part of Common Lisp and may
be removed in future releases of Macintosh Common Lisp.

Pathname structure

Common Lisp pathnames (Lisp data objects of type pathname) have
six components: host, device, directory, name, type, and
version.
282 Macintosh Common Lisp Reference

Macintosh physical pathnames

On a Macintosh computer, filenames have only three components:
directory, filename, and an optional type. Macintosh filenames
can be translated into Common Lisp pathname structures; when they
are, the host, device, and version components of the pathname are
:unspecific.

The Macintosh physical pathname syntax has the following
components:
 [:] {directory:}* [name] [.type]

A Macintosh physical pathname may have multiple colons. The
component of the string preceding its first delimiter does not name a
logical host.
? (make-pathname :directory "Style&Design:Glossary:"

 :name "frontmatter")

#P"Style&Design:Glossary:frontmatter"

Common Lisp logical pathnames

Common Lisp logical pathname syntax has the following components:
 [host:] [;] {directory;}* [name] [.type [.version]]

In logical pathname syntax, the host and directory components are
indicated by the characters to the left of the last colon or semicolon.
Logical pathnames can be distinguished from physical pathnames by
the following tests:

■ The first delimiter between components is a colon.

■ The first delimiter is the only colon.

■ The string preceding the first delimiter names a defined logical host.

For example, the following is a Common Lisp logical pathname because
the first delimiter between pathname components is a colon, it is the
only colon, and "CCL", the string preceding the first delimiter, names a
defined logical host:
 "CCL:Interface Tools;My Menus;custom-menu.lisp"
Chapter 8: File System Interface 283

Defining logical hosts

By defining logical hosts, Macintosh Common Lisp is able to exchange
logical pathnames conveniently and portably. When a logical host is a
different file system, for example, one in which the length of filenames
is restricted, logical hosts and logical pathname translations provide a
necessary layer of abstraction. Logical hosts are also useful when
moving software from one machine to another.

Macintosh Common Lisp will recognize a logical host only after it has
been defined. To define a logical host, you create and execute a setf
form to set logical-pathname-translations for the relevant
host. You should do this for every file system with which you will
interact. Here is a very simple example:
? (setf (logical-pathname-translations "home")

 `(("**;*.*" ,(merge-pathnames ":**:*.*"

 (mac-default-directory)))))

When Macintosh Common Lisp is run, two logical hosts are set up
automatically:

■ The host "ccl" is set to the directory holding the MCL application.

■ The host "home" is set to the directory holding the document that was
launched with Macintosh Common Lisp.

After you define a logical host, you can inspect it by clicking Inspect on
the Tools menu, then clicking Logical Hosts. This displays a list of all
the logical hosts used and generated by Macintosh Common Lisp.

◆ Note: For a full discussion of logical pathname namestrings and their
syntax, see Common Lisp: The Language, pages 628–629. For information
on the philosophy and use of logical-pathname-translations,
see pages 636–637.

Ambiguities in physical and logical pathnames

In Macintosh Common Lisp, the colon is both the host delimiter in
logical pathname syntax and the device/directory delimiter in physical
pathname syntax. This can cause ambiguity. For example, in the
namestring "bar:foo.lisp", "bar" can be either a logical host or a
top-level physical directory.

If you have both a top-level physical directory and a logical host with
the same name, there is a possibility of ambiguity. For this reason it is
advisable not to give a physical device and a logical host the same
name.
284 Macintosh Common Lisp Reference

If you have a name conflict, you should do one of the following:

■ Rename one.

■ Use the special escape character, #\∂ (Option-D) to quote the colon
after the directory name of the physical pathname; this indicates that
the pathname is physical. The escape character is documented in “The
pathname escape character” on page 289.

■ Create the physical pathname with the function
 (make-pathname :directory '(:absolute namestring))

■ where namestring is the namestring of the physical directory.

More on namestrings and pathnames

Types may be specified as part of the filename; for instance, you
generally specify the type of an uncompiled file of Lisp source code by
giving it the type .lisp, and compiled source code by giving it the
type .fasl.

All functions that accept pathnames as arguments also accept
namestrings, converting them to pathnames before using them. It is
seldom necessary to use (pathname "hd:foo"). Instead, you can use
"hd:foo". However, if the pathname is going to be parsed repeatedly,
you should use the pathname syntax; that is, the value of *default-
pathname-defaults* should be a pathname, not a string. (See the
documentation of *default-pathname-defaults* in Common
Lisp: The Language.)

The Common Lisp function parse-namestring converts a
namestring to a pathname. The Common Lisp function namestring
converts a pathname to a string. You can create a pathname directly by
specifying its components using the Common Lisp function make-
pathname.

Creating and testing pathnames

Common Lisp provides several functions to create pathnames and to
test whether an object is a pathname. You can create a pathname
directly, merge a pathname with default components, and retrieve
components of a pathname.
Chapter 8: File System Interface 285

Full documentation of most of these functions appears in Chapter 23,
“File System Interface,” of Common Lisp: The Language, and they are not
redocumented here. Only the following function shows special
behavior in Macintosh Common Lisp.

make-pathname [Function]

Syntax make-pathname &key :host :device :directory :name
:type :version :defaults :case

Description The Common Lisp function make-pathname constructs and returns a
pathname. After the components specified by the :host, :device,
:directory, :name, :type, and :version arguments are filled in,
missing components are taken from the :defaults argument. The
Macintosh Operating System does not support hosts, devices, or versions,
so Macintosh Common Lisp recognizes only logical hosts. In Common
Lisp, a logical host is a string that has been defined as a logical pathname
host using setf and logical-pathname-translations. (See page
632 of Common Lisp: The Language for a discussion of how this is done.)

Arguments :host Specifies the host component. The :host argument
determines whether a pathname is physical or logical. If
the :host argument is :unspecific, or if it is omitted
and the :defaults argument is a physical pathname,
then a physical pathname is created. Otherwise the
:host argument must be nil or a string, and a logical
pathname is created.

:device Specifies the device component. Because the Macintosh
computer does not support devices, this argument is
ignored and pathname-device always returns
:unspecific.

:directory Specifies the directory component. The value of the
:directory argument is nil, :wild, :wild-
inferiors, string, or list.

nil Specifies that the directory component should be taken
from the defaults.

:wild Specifies the wildcard "*".
:wild-inferiors

Specifies the wildcard "**".
string A string, which may be a wildcard or empty, and which

may end in a colon or semicolon. Unless the :host
argument is a logical host, Macintosh Common Lisp
interprets a string argument with colons or semicolons as
a Macintosh-syntax directory namestring.

list A list beginning with either :absolute or :relative
followed by the individual directory component strings.
286 Macintosh Common Lisp Reference

:name Specifies the name component. The value of the :name
argument is nil, :wild, or string.

nil Specifies that the name component should be taken from
the defaults.

:wild The wildcard "*".
string A string, which may be a wildcard or empty. Quoted

colons are allowed in the :name component, but they
cause an error when they are passed to the Macintosh File
System.

:type Specifies the type component. Its value is nil, :wild, or
string.

nil Specifies that the type component should be taken from
the defaults.

:wild The wildcard "*".
string A string, which may be a wildcard or empty. Quoted

colons are allowed in the :type component, but they
cause an error when they are passed to the Macintosh File
System.

:version Ignored unless the :host argument is a logical host. For
logical pathnames, the value of the :version argument
may be nil, :unspecific, :wild, :newest, or a
positive integer.

nil Specifies that the version component should be taken
from the default.

:unspecific
Indicates whether the version number is unspecified.

:wild The wildcard "*".
:newest The newest version.
integer A positive integer representing the version number.

Currently Macintosh Common Lisp allows only 0.
:defaults Specifies which defaults to use. The default value of the

:defaults argument is a pathname whose host
component is the same as the host component of
default-pathname-defaults and whose other
components are all nil.

:case Determines how character case is treated. The value of
:case may be :common or :local. A full description of
:case is given in Common Lisp: The Language, starting on
page 617.

Full documentation of make-pathname is given in Common Lisp: The
Language, on page 643.
Chapter 8: File System Interface 287

Parsing namestrings into pathnames

The MCL pathname parser uses the following rules to break
namestrings into their components.

■ Unspecified components are given the value nil. Neither defaults nor
logical directory names are merged at parse time, with the exception of
the :host component of *default-pathname-defaults*. The
function merge–pathnames merges one pathname with another by
replacing nil components of its first argument with corresponding
components of its second argument. The function full-pathname
performs the logical-to-physical pathname translation.

■ The :directory component is identified as the characters from the
end of the host component to the last colon or semicolon. The colon is
the standard Macintosh separator character for directories. The
semicolon is the separator for logical directory names. A directory
name that begins with a colon is relative to the Macintosh default
directory.

■ The :name component is identified as the characters that follow the
directory component until either the end of the string or the beginning
of the type component. The period between the name and the type
component is only a separator and is not part of the :name component.
To make a name containing a period, use the escape character (see the
next section, “The Pathname Escape Character”). To specify a file that
has an empty string as its name, use a single period after the directory
separator character.

■ The :type component is composed of the characters from the name
component to either the version component or the end of the string.

■ The :version component, if present, is always either .newest or 0.
It is the last component before the end of the string.

Table 8-1 contains some examples of namestring-to-pathname parsing.
288 Macintosh Common Lisp Reference

■ Table 8-1 Some namestrings parsed into pathnames

Pathname components

Namestring Host Directory Name Type

"hd:foo.lisp" (:absolute "hd") "foo" "lisp"

"hd:" (:absolute "hd") nil nil

"hd:." (:absolute "hd") "" nil

":foo" (:relative) "foo" nil

"foo" nil "foo" nil

"foo." nil "foo" nil

"foo.fasl" nil "foo" "fasl"

"hd:sub-dir:foo.text" (:absolute "hd" "sub-dir") "foo" "text"

"sys:bar;foo.lisp" "sys" (:absolute "bar") "foo" "lisp"

The pathname escape character

If you need to use a colon, semicolon, period, or asterisk as part of a
pathname, quote it with the special escape character, #\∂ (Option-d).
This escape character works very much like the backslash character in
strings. Any character preceded by a ∂ loses any special meaning.

◆ Note: Asterisks must be quoted in physical pathnames, because
Common Lisp mandates that functions such as truename and open
must signal an error if given a wild pathname.

Table 8-2 illustrates the quoting mechanism in pathnames.
Chapter 8: File System Interface 289

■ Table 8-2 Effect of escape characters

Pathname components

Namestring Directory Name Type

"hd:foo.lisp" (:absolute "hd") "foo" "lisp"

"hd:foo∂.lisp" (:absolute "hd") "foo∂.lisp" nil

":fo∂o∂." (:relative) "foo∂." nil

";ccl∂;foo" (:relative) "ccl∂;foo" nil

"ccl;fo∂∂o" (:absolute (:logical "ccl)) "fo∂∂o" nil

"hd:fo\"o.lisp" (:absolute "hd") "fo\"o" "lisp"

Only the needed escape characters are retained (for example, the “∂”
before the “o” in the third line is removed, but the “∂” before the period
is retained). Of course, this mechanism is meant to work only for the
MCL additions; you can specify a filename that includes a colon, but
you cannot open such a file, because Macintosh computers do not
accept filenames that contain colons.

◆ Note: The escape characters are not part of the true name. They are
included only in the Lisp representation of the pathname, not in the
Macintosh system’s representation of the pathname.

The make-pathname function attempts to insert the appropriate
escape characters in components that need them. The user need only
insert escape characters in front of semicolons that are part of directory
components, and in front of the character ∂. Here are some examples of
the use of make-pathname.

? (make-pathname :directory "Hd:" :name "foo" :type "lisp")
#P"Hd:foo.lisp"
? (make-pathname :directory nil

 :name "foo"

 :type "fasl")

#P"foo.fasl"
? (make-pathname :directory nil :name "foo."

 :type "fasl")

#P"foo∂..fasl"
? (make-pathname :directory "hd;"

 :name "foo."

 :type (pathname-type *.lisp-pathname*))

#P"hd;foo∂..lisp"
290 Macintosh Common Lisp Reference

Loading files

The following functions and variables govern the loading of files. For
Common Lisp functions governing the loading of files, see Section 23.4,
“Loading Files,” starting on page 657 of Common Lisp: The Language.

.lisp-pathname [Variable]

Description The *.lisp-pathname* variable contains the file type for MCL source
code files. The initial value of this variable is #P".lisp".

.fasl-pathname [Variable]

Description The *.fasl-pathname* variable contains the file type for MCL
compiled files. The initial value of this variable is #P".fasl".

pathname-translations-pathname [Variable]

Description The *pathname-translations-pathname* variable contains a
pathname whose host is :ccl and whose type is the string "pathname-
translations".

require [Function]

Syntax require module &optional pathname

Description The require function was once a Common Lisp function but is now
specific to Macintosh Common Lisp. It attempts to load the files in module
if they have not already been loaded.

Arguments module The name of the module.
pathname A pathname or list of pathnames indicating the files

contained in the module.

There are three ways to tell require how to look for a module:

■ If pathname is given, it should be a pathname or a list of pathnames
whose files should be loaded in order, left to right.
Chapter 8: File System Interface 291

■ If pathname is not given, require first looks in the variable *module-
file-alist*, which is bound to an association list. In this association
list, the car of each element should be a module name, and the cdr of
each element should be a pathname or list of pathnames making up the
module. The require function loads all the files listed. Initially,
module-file-alist is empty. Here is how to add something to
module-file-alist.

 ? (push '(my-system . ("my-sys;definitions.fasl"

 "my-sys;actions.fasl"))

 module-file-alist)

■ If the module is not registered in *module-file-alist*, require
looks for a file with the same name as the module name in the locations
specified by the variable *module-search-path*. The *module-
search-path* variable should be bound to a list of pathnames, each
specifying the directory and possibly a file type (the name component
is ignored and replaced by the name of the module). If no file type is
given, both *.lisp-pathname* and *.fasl-pathname* are
looked for, and the more recent file is used.

For example, (push "ccl:misc;" *module-search-path*)
causes (require 'tools) to look for the file
ccl:misc;tools.fasl or ccl:misc;tools.lisp, whereas
(push "ccl:misc;.fasl" *module-search-path*) causes
(require 'tools) to look for ccl:misc;tools.fasl before
searching for other versions of the tools file. The initial value of
module-search-path is (#4P"ccl:" #4P"home:"
#4P"ccl:library;" #4P"ccl:examples;").

Macintosh Common Lisp keeps a list of files currently being loaded.
This helps ensure that files requiring each other do not cause infinitely
recursive calls to require.

For documentation of the state of require, see Common Lisp: The
Language, pages 277–278.

provide [Function]

Syntax provide module

Description The provide function was once part of Common Lisp but is now specific
to Macintosh Common Lisp. It adds a new module name to the list of
modules maintained in the variable *modules*, indicating that the
module module has been provided.

For documentation of the state of provide, see Common Lisp: The Language,
pages 277–278.

Argument module The name of the module.
292 Macintosh Common Lisp Reference

Macintosh default directories

The Macintosh Operating System maintains a default directory of its
own. Any namestring that begins with a colon or semicolon is relative.
The directory component of a relative pathname is appended to the
directory component of *default-pathname-defaults* before
accessing the file system. If the resulting pathname is still relative, then
the value of mac-default-directory is used.

◆ Note: Desk accessories and other background processes may change the
default directory without notice. If you must access the Macintosh
default directory, you should set it just before accessing it, or
(preferably) specify a directory explicitly in file system calls.

The Macintosh default directory is initially the directory containing
Macintosh Common Lisp.

mac-default-directory [Function]

Syntax mac-default-directory

Description The function mac-default-directory returns the Macintosh default
directory.

Example
? (mac-default-directory)

#P"BigTowel:CCL:"

set-mac-default-directory [Function]

Syntax set-mac-default-directory pathname

Description The function set-mac-default-directory sets the Macintosh default
directory to the directory component of pathname.

If the directory component of a pathname is empty, the Macintosh computer
looks for the directory in the Macintosh default directory. To ensure that the
Macintosh default directory is not used, specify the directory component of the
pathname. (One way to do this is by specifying a merge with some other
default.)
Chapter 8: File System Interface 293

The default directory returned by mac-default-directory can change at
any time; set it explicitly just before using it, or (preferably) specify a directory
explicitly in file system calls.

Argument pathname A pathname, string, or stream associated with a file. If the
directory specified by the pathname exists, set-mac-
default-directory sets the Macintosh default
directory to the directory component of pathname. If it
does not exist, set-mac-default-directory returns
nil and the Macintosh default directory is not changed.

Example
? (set-mac-default-directory #P"BigTowel:CCL Test:")

#P"BigTowel:CCL Test:"

mac-namestring [Function]

Syntax mac-namestring pathname

Description The mac-namestring function translates pathname from a logical to a
physical pathname. If pathname is a logical pathname or a string describing
a logical pathname, it is translated to a physical pathname. If pathname
contains MCL logical directories, they are expanded. The function returns
the physical pathname as a namestring. The function then prepares
pathname for passing to the Macintosh File Manager by verifying that the
namestring contains no wildcards or quoted colons and by removing all
quoting. If pathname contains wildcards or quoted colons, an error is
signaled.

Argument pathnameA pathname or a string.

Example
? (mac-namestring "ccl:examples;dialog-editor.lisp")

"hd:myccl:examples:dialog-editor.lisp"

mac-directory-namestring [Function]

Syntax mac-directory-namestring pathname
294 Macintosh Common Lisp Reference

Description The function mac-directory-namestring turns pathname into a
namestring, expands all logical directories into physical directories, then
prepares it for passing to the Macintosh File Manager by verifying that the
namestring contains no wildcards or quoted colons and by removing all
quoting. If pathname contains wildcards or quoted colons, an error is
signaled. It returns only the directory component of the pathname as a
string.

Argument pathnameA pathname, string, or stream.

mac-file-namestring [Function]

Syntax mac-file-namestring pathname

Description The function mac-file-namestring turns pathname into a namestring,
then prepares it for passing to the Macintosh File Manager by verifying
that the namestring contains no wildcards or quoted colons and by
removing all quoting. If pathname contains wildcards or quoted colons, an
error is signaled. It returns only the part of the string excluding the
directory specification (that is, the filename and file type).

Argument pathnameA pathname, string, or stream.

Structured directories

Common Lisp provides a portable format for specifying directories,
discussed in Common Lisp: The Language, starting on page 620.
Macintosh Common Lisp follows that format, with the exception that
the symbols :up and :back are equivalent in the current Macintosh
File System.

The following function extends the Common Lisp function
directory.

directory [Function]

Syntax directory pathname &key :directories :files
:directory-pathnames :test :resolve-aliases
Chapter 8: File System Interface 295

Description The directory function takes a pathname as its argument and returns a
list of pathnames, one for each file in the file system that matches the given
pathname.

You can use directory with any of the wildcards described in the next
section. When you use wildcards, this function returns a list of the true names
of all matching files in all matching directories. If no files match the specified
pathname, directory returns nil.

Arguments pathname A value. If the directory specified by the pathname exists,
directory returns a list of pathnames of files included
in that directory. If it does not, directory returns nil.

:directories
An argument specifying whether to include directories in
the returned list. The default value is nil.

:files An argument specifying whether to include files in the
returned list. The default value is true.

:directory-pathnames
An argument specifying whether to represent directory
pathnames in the returned list as directories or files
(foo:baz: or foo:baz). The default value is true, which
means that they are represented as directories.

:test A test function to be applied to each matching pathname.
The :test argument is called only if all the other
conditions are satisfied.

:resolve-aliases
An argument specifying whether to resolve aliases. If the
value of :resolve-aliases is :show-alias, then
aliases are resolved but the pathname returned contains
the name of the alias rather than the name of the target.
Any other non-nil value causes aliases to be resolved
and the pathname returned to be that of the target. The
default value is nil.

directoryp [Function]

Syntax directoryp pathname

Description The directoryp function returns the true name of the directory if
pathname names a directory, nil if it names an ordinary file; otherwise it
signals an error. (For true names, see Common Lisp: The Language under the
function truename.)

Argument pathname A pathname or string.
296 Macintosh Common Lisp Reference

full-pathname [Function]

Syntax full-pathname pathname-or-namestring &key :no-error

Description The full-pathname function returns a pathname whose logical
components are all translated into physical components. If the function is
called on a namestring, the namestring is first converted into a Lisp
pathname. It can translate both Common Lisp logical pathnames and
MCL logical directories (described in “Logical directory names” on
page 310). The pathname is merged with *default-pathname-
defaults*.

This function was formerly called expand-logical-namestring.

Arguments pathname-or-namestring
A pathname or namestring.

:no-error If the value of :no-error is t (the default) and there is
no physical directory for a logical directory in pathname,
Macintosh Common Lisp returns nil. If the value of
:no-error is nil, Macintosh Common Lisp signals an
error.

Example

This example creates a logical-to-physical mapping and gets its full
pathname.
;Create the logical to physical mapping:
? (setf (logical-pathname-translations "misc")

 '((**;**" "hd:ccl-misc:**.*.*")))
NIL
;Load the file "hd:ccl-misc:hacks.lisp":
? (load "misc:hacks.lisp")
;Loading "hd:ccl-misc:hacks.lisp"...

#P"hd:ccl-misc:hacks.lisp"

? (full-pathname "misc:hacks.lisp")
"hd:ccl-misc:hacks.lisp"
? (full-pathname "MISC:hacks.lisp")
"hd:ccl-misc:hacks.lisp" ;Note case insensitivity.

directory-pathname-p [Function]

Syntax directory-pathname-p pathname
Chapter 8: File System Interface 297

Description The directory-pathname-p function returns a Boolean value: t if
pathname is a pathname specifying a directory, nil if it is not. A pathname
is a directory pathname if its name is nil or the empty string and its type
is nil or :unspecified.

Argument pathname A pathname, string, or stream.

Example
? (directory-pathname-p "ccl:foo;")

T

? (directory-pathname-p "ccl:foo")

NIL

? (directory-pathname-p "hd:ccl:")

T

? (directory-pathname-p "hd:ccl:init.lisp")

NIL

Wildcards

Macintosh Common Lisp supports two forms of wildcards. One is
extended wildcards as specified in Common Lisp: The Language, pages
623–627. Extended wildcards do not depend on a specific wildcard
syntax. If you plan to port your code over multiple file systems, use the
Common Lisp extended wildcards.

You can also use the simpler wildcard system described here, which is
compatible with previous versions of Macintosh Common Lisp.

The wildcards are used in the following ways:

■ One asterisk matches zero or more characters in a component.

■ One asterisk in place of a directory component matches one directory
level.

■ Two asterisks used in place of a directory match zero or more
subdirectories at all levels of the parent directory.

■ Two asterisks used in place of the filename components match any
number of components that are left.

The following examples assume the existence of a mounted disk with
the name "hd".

■ (directory "hd:*:" :files nil :directories t) returns a
list of all subdirectories directly under "hd:".

■ (directory "hd:**") returns a list of files under "hd:".
298 Macintosh Common Lisp Reference

■ (directory "**:**:" :directories t :files nil) returns
a list of all the subdirectories at all levels in all the devices known to the
machine.

■ (directory "**:**") returns a list of all the files at the top level in
all the devices known to the machine.

■ (directory "hd:*.lisp") returns a list of all the files in the top
level of "hd:" that are of type "lisp".

■ (directory "**:ccl:*:*:prin*12.**") returns a list of all the
files in any device that start with the letters "prin" and end in "12"
and are two levels below a directory named "ccl:".

File and directory manipulation

The functions in this section operate on both directories and files. A
directory operation is performed if the filename component is empty
(that is, if the pathname ends in a colon or semicolon); otherwise, a file
operation is performed.

The functions operate on Lisp pathnames, strings, and streams.

delete-file [Function]

Syntax delete-file pathname &key :if-does-not-exist

Description This extension of the Common Lisp function delete-file deletes the
specified pathname.

Arguments pathname A pathname.
:if-does-not-exist

A keyword that can take the value nil or :error. If
pathname does not exist and the value of :if-does-not-
exist is nil (the default), Macintosh Common Lisp
returns nil. If it is :error, Macintosh Common Lisp
signals an error.

create-file [Function]

Syntax create-file pathname &key :if-exists :mac-file-type :mac-
file-creator
Chapter 8: File System Interface 299

Description The create-file function creates an empty file or a directory named
pathname and returns the truename of the created file or directory. If
necessary, create-file creates missing intermediate directories.

The :mac-file-type and :mac-file-creator keywords are case
sensitive. The values of these keywords must be os-types. An os-type is a four-
character string or keyword that is case sensitive.

Arguments pathname A pathname.
:if-exists A keyword that determines what to do if the file already

exists. If pathname already exists and the value of :if-
exists is :error (the default), Macintosh Common
Lisp signals an error. If its value is nil, Macintosh
Common Lisp does nothing and returns nil. If it is
:overwrite or :supersede, then Macintosh Common
Lisp overwrites or replaces the previous file and returns
the new file.

:mac-file-type
The os-type of the new file. The default is :TEXT.
Directories do not have Macintosh types.

:mac-file-creator
The creator of the new file. The default is :CCL2.
Directories do not have Macintosh creators.

open [Function]

Syntax open filename &key :direction :element-type
:if-exists :if-does-not-exist :external-format
:mac-file-creator :fork

Description The Common Lisp function open opens a stream to the file specified by
filename, which may be a string, a pathname, a logical pathname, or a
stream. Two new keywords, :mac-file-creator and :fork,
distinguish the MCL implementation from Common Lisp’s; the keyword
arguments :direction and :if-exists can each take an additional
value. The additional MCL keywords and values are documented next.

Arguments :direction A pathname or string. This keyword can now take the
value :shared in addition to :input, :output, :io,
and :probe. The value :shared is the same as :io
except that more than one stream can be open to a file at
the same time. It defaults to :input.
300 Macintosh Common Lisp Reference

:if-exists The action to take when the direction is :output or :io
and the file already exists. This argument can take the
value :dialog in addition to the values :append,
:error, :new-version, :rename, :rename-and-
delete, :overwrite, :supersede, and nil. The
default is :error. The values :dialog, :rename, and
:new-version cause a dialog box to request
confirmation if the file already exists.

:external-format
A four-character string to store as the Macintosh file type.
Its value defaults to :default, in which case the
Macintosh file type is :TEXT.

:mac-file-creator
The Macintosh file creator. It defaults to :CCL2.

:fork An argument specifying whether to open the data fork or
the resource fork. It may have the value :data (the
default) or :resource.

rename-file [Function]

Syntax rename-file old-pathname new-pathname &key :if-exists

Description The Common Lisp function rename-file renames the specified old-
pathname. The new name is the result of merging new-pathname with old-
pathname. Both arguments may be a string, stream, or Lisp pathname. If
new-pathname is an open stream associated with a file, then the stream
itself and the file associated with it are affected.

If successful, the rename-file function returns three values. The first value
is the renamed old-pathname. The second value is the true name of the old-
pathname before it was renamed. The third value is the true name of the old-
pathname after it was renamed. An error is signaled if the renaming operation
is not successful.

Arguments old-pathname The old pathname of the file or directory.
new-pathname The new pathname of the file or directory.
:if-exists A keyword that determines what to do if the file already

exists. If new-pathname already exists and the value of
:if-exists is :error (the default), Macintosh
Common Lisp signals an error. If its value is nil,
Macintosh Common Lisp returns nil. If it is
:overwrite or :supersede, then Macintosh Common
Lisp overwrites or replaces the previous file and returns
the new file.

Example
Chapter 8: File System Interface 301

? (rename-file "hd:doc:file system notes"
 "BigTowel:misc:renamed notes")

#P"BigTowel:misc:renamed file system notes"

#1P"hd:doc:file system notes"

#1P"BigTowel:misc:renamed file system notes"

file-create-date [Function]

file-write-date [Function]

set-file-create-date [Function]

set-file-write-date [Function]

Syntax file-create-date pathname
file-write-date pathname
set-file-create-date pathname time
set-file-write-date pathname time

Description These functions report on or modify the creation and modification dates
of files. The file-create-date function returns the time when the
volume, directory, or file specified by pathname was created. The file–
write–date function returns the time when the volume, directory, or file
specified by pathname was last modified. The corresponding set-
functions change these parameters.

Arguments pathname A pathname, string, or stream.
time A time, given in the Common Lisp universal time format.

(The Common Lisp universal time format is described in
Common Lisp: The Language, on page 703.)

File operations

The following functions operate on files only. These functions, in
conjunction with the directory function, provide the needed
flexibility for operating on directories.

copy-file [Function]

Syntax copy-file old-pathname new-pathname &key :if-exists :fork
302 Macintosh Common Lisp Reference

Description The copy-file function copies the file to a file corresponding to the
pathname specified by merging new-pathname with old-pathname.
Arguments may be either strings, Lisp pathnames, or streams. If new-
pathname does not have a filename component, then the filename of old-
pathname is used.

If successful, the copy-file function returns three values. The first value is
the new pathname with the filename component filled in. The second value is
the true name of the file before it was copied. The third value is the true name
of the copied file. An error is signaled if the copying operation is not successful.

Arguments old-pathname The old pathname of the file.
new-pathname The new pathname of the file.
:if-exists If new-pathname already exists and the value of :if-

exists is :error (the default), Macintosh Common
Lisp signals an error. If its value is nil, Macintosh
Common Lisp returns nil. If it is :overwrite or
:supersede, then Macintosh Common Lisp overwrites
or replaces the previous file and returns the new file.

:fork The type of fork. This value can be :both, :data, or
:resource. The default is :both.

Example

? (copy-file "BigTowel:misc:renamed notes"
 "BigTowel:CCL Doc:copy")

#P"BigTowel:CCL Doc:copy"

#1P"BigTowel:misc:renamed notes"

#1P"BigTowel:CCL Doc:copy"

lock-file [Function]

unlock-file [Function]

file-locked-p [Function]

Syntax lock-file pathname
unlock-file pathname
file-locked-p pathname

Description These functions allow you to manipulate the software lock that prevents
modifications to a particular file. The file-locked-p function returns
nil if the file is not locked.

If a file is locked, opening it creates a read-only buffer. You can look at the file
but you cannot modify it.

Argument pathname A pathname, string, or stream.
Chapter 8: File System Interface 303

mac-file-type [Function]

mac-file-creator [Function]

set-mac-file-type [Function]

set-mac-file-creator [Function]

Syntax mac-file-type pathname
mac-file-creator pathname
set-mac-file-type pathname os-type
set-mac-file-creator pathname os-type

Description Every Macintosh file has two parameters specifying the type of the file and
the application that created the file. These parameters, called os-types, are
specified by four-character keywords or symbols that are case sensitive.

The mac-file-type and mac-file-creator functions return keywords
indicating the type and creator parameters of pathname.

The set-mac-file-type and set-mac-file-creator functions
destructively modify the type or creator of pathname. The new type or creator
is returned as a keyword.

Arguments pathname A pathname, string, or stream.
os-type The parameters specifying the type of the file and the

application that created it. The os-type parameter may be
a string of four characters or a four-character keyword.
Files created by Macintosh Common Lisp have the creator
:CCL2 and the type :TEXT or :FASL. The os-type
arguments are case sensitive and may contain spaces.

open-file-streams [Variable]

Description The *open-file-streams* variable is bound to a list of all streams
open to disk files. The user should not change this variable. It is updated
automatically by file stream operations.

file-resource-size [Function]

Syntax file-resource-size path

Description Returns the size in bytes of the resource fork of the file whose pathname is
path.
304 Macintosh Common Lisp Reference

file-data-size [Function]

Syntax file-data-size path

Description Returns the size in bytes of the data fork of the file whose pathname is path.

file-allocated-resource-size [Function]

Syntax file-allocated-resource-size path

Description Returns the number of bytes allocated for the resource fork of the file
whose pathname is path.

file-allocated-data-size [Function]

Syntax file-allocated-data-size path

Description Returns the number of bytes allocated for the data fork of the file whose
pathname is path.

file-info [Function]

Syntax file-info path

Description Returns six values for the file whose pathname is path: create-date,
modify-date, resource length, data length, allocated resource length,
allocated data length.
Chapter 8: File System Interface 305

Volume operations

Volume operations take as an argument either an integer (the volume
number) or a pathname or string. If the argument is a pathname or
string, only the volume component (the root directory) is used. Volume
numbers are unique negative integers assigned to each mounted
volume. Volumes numbers change from session to session and may
change if a volume is unmounted and remounted. Within these limits,
volume numbers allow a program to distinguish between multiple
volumes with the same name. The volume number 0 is used to specify
the default volume. If a string is used to specify a volume, it must
contain a colon.

Drive numbers are positive integers denoting physical devices.

The following functions signal an error if the number or pathname
given as an argument does not correspond to a mounted volume.

volume-number [Function]

Syntax volume-number volume

Description The volume-number function returns the volume reference number of
volume. If volume is a valid volume number, it is simply returned.

Argument volume An integer, pathname, or string representing a volume.

Example

See the example under drive-name.

eject-disk [Function]

Syntax eject-disk volume

Description The eject-disk function ejects volume if possible. It is not possible to
eject hard disks. If successful, eject-disk returns the true name of
volume; otherwise, it signals an error. It does not unmount the volume.

Argument volume A volume number, drive number, pathname, or string
representing a volume.
306 Macintosh Common Lisp Reference

eject&unmount-disk [Function]

Syntax eject&unmount-disk volume

Description The function eject&unmount-disk ejects and unmounts volume if
possible. If successful, eject&unmount-disk returns the true name of
volume; otherwise, it signals an error. It is not possible to eject hard disks.

Argument volume A volume number, drive number, pathname, or string
representing a volume.

disk-ejected-p [Function]

Syntax disk-ejected-p volume

Description The disk-ejected-p function returns t if the volume is ejected and nil
otherwise. It signals an error if the specified volume is not mounted. The
probe–file function can be used to check whether a volume is mounted.

Argument volume A volume number, drive number, pathname, or string
representing a volume.

hfs-volume-p [Function]

Syntax hfs-volume-p volume

Description The hfs-volume-p function returns t if volume uses the Hierarchical File
System (HFS) and nil if it uses the Macintosh File System (MFS). Most
current Macintosh computers use only HFS devices, with the exception of
floppy disks.

The HFS and MFS file systems are described in Inside Macintosh.

Argument volume A pathname or string representing a volume.

flush-volume [Function]

Syntax flush-volume volume
Chapter 8: File System Interface 307

Description Some file system manipulations are buffered for execution at a later time.
The flush-volume function ensures that all buffered file manipulations
to a specified volume are performed. The flush–volume function
returns the name of the volume affected.

Argument volume A pathname or string representing a volume.

drive-name [Function]

Syntax drive-name number

Description The drive-name function returns the name of the drive whose drive
number or volume number is number.

Argument number A fixnum. A positive number is a drive number; a
negative number, a volume number.

Example
? (volume-number #P"Dr. Johnson:")

-1

? (volume-number -1)

-1

? (drive-name -1)

#P"Dr. Johnson:"

drive-number [Function]

Syntax drive-number pathname

Description The drive-number function returns the drive number of the drive
indicated by pathname.

Argument pathname A pathname or string.

User interface

The following functions let the user choose or set a pathname to a file
or directory.
308 Macintosh Common Lisp Reference

choose-file-dialog [Function]

Syntax choose-file-dialog &key :mac-file-type :directory
:button-string

Description The choose-file-dialog function displays the standard Macintosh
SFGetFile dialog box, allowing you to select a file for reading. Unless
the dialog is canceled, this function returns a pathname.

Arguments :mac-file-type
An os-type parameter or list of os-type parameters. If
specified, only files with the given Macintosh file type are
displayed in the dialog box. Os-types are case sensitive.

:directory A pathname or string. Specifies the directory shown
when the dialog box first appears. It defaults to the last
directory shown by the Choose File dialog box or Choose
New File dialog box.

:button-string
A string. Specifies the text that appears in the button that
opens the chosen file. The default is Open.

choose-new-file-dialog [Function]

Syntax choose-new-file-dialog &key :directory :prompt :button-
string

Description The choose-new-file-dialog function displays the standard
Macintosh SFPutFile dialog box, allowing you to specify a destination
file for writing. An alert dialog box requests confirmation if an existing file
is chosen. Unless canceled, it returns a pathname.

Arguments :directory Specifies the directory shown when the dialog box first
appears. It defaults to the last directory shown by the
Choose File dialog box or Choose New File dialog
box.The filename component of :directory is used as
the default filename in the editable-text item of the dialog
box.

:prompt Specifies the text to display above the area in which the
user types the filename. If supplied, :prompt should be
a string. The default prompt is As….

:button-string
Specifies the text that appears in the button that opens the
file. The default is Save.
Chapter 8: File System Interface 309

choose-directory-dialog [Function]

Syntax choose-directory-dialog &key :directory

Description The function choose-directory-dialog displays a variation of the
standard Macintosh SfGetFile dialog box. Unless canceled, it returns a
directory pathname.

Argument :directory Specifies the directory shown when the dialog box first
appears. It defaults to the last directory shown by the
choose-file-dialog, choose-new-file-dialog,
or choose-directory-dialog dialog box.

choose-file-default-directory [Function]

Syntax choose-file-default-directory

Description The function choose-file-default-directory returns the
namestring of the last directory selected by the choose-file-dialog,
choose-new-file-dialog, or choose-directory-dialog dialog
box. Initially, this is the directory that is the translation of "home:".

set-choose-file-default-directory [Function]

Syntax set-choose-file-default-directory pathname

Description The function set-choose-file-default-directory sets the default
directory used by the choose-file-dialog, choose-new-file-
dialog, or choose-directory-dialog dialog box to pathname. It
returns pathname.

Argument pathname A pathname or string.

Logical directory names

If you are new to Macintosh Common Lisp, you do not need to read this
section.
310 Macintosh Common Lisp Reference

Previous versions of Macintosh Common Lisp provided a facility,
called logical pathnames, that is now called logical directory names. It
is not connected with the new Common Lisp logical pathname facility.
You can still use logical directory names; however, they will probably
go away in future releases of Macintosh Common Lisp. For your new
code, you should use Common Lisp logical pathnames.

Logical directory names serve as variables in a pathname string. Their
goal is to allow code with embedded pathname information to run
under different directory hierarchies.

Unlike physical directories, which end with colons, logical directory
names end with semicolons.

Because of the use of a semicolon as the directory delimiter in MCL
logical directories, a namestring containing semicolons but no host will
not parse to a Common Lisp logical pathname. However, if it is merged
with a logical pathname, the result is a logical pathname.
? (ccl::logical-pathname-p (pathname "blotz;blitz;"))

NIL

? (ccl::logical-pathname-p

 (merge-pathnames

 (pathname "blotz;blitz;")

 (pathname "ccl:")))

T

The following MCL functions and variables govern logical directory
names.

logical-directory-alist [Variable]

Description The *logical-directory-alist* variable contains an association list
that maps between logical and physical pathnames.

This variable was formerly called *logical-pathname-alist*.

def-logical-directory [Function]

Syntax def-logical-directory logical-directory-name physical-pathname

Description The function def-logical-directory defines a new logical directory
name and adds it to *logical–directory–alist*. It returns the new
value of *logical–directory–alist*.

To remove a logical pathname from the environment, call def-logical-
directory with a physical-pathname of nil.
Chapter 8: File System Interface 311

This function was formerly called def-logical-pathname.

Arguments logical-directory-name
A logical directory name.

physical-pathname
The physical pathname associated with logical-directory-
name. It may contain logical components.
312 Macintosh Common Lisp Reference

313

Chapter 9:

Debugging and Error Handling

Contents

Debugging tools in Macintosh Common Lisp / 314
Compiler options / 315
Fred debugging and informational commands / 317
Debugging functions / 320
Error handling / 327

Functions extending Common Lisp error handling / 328
Break loops and error handling / 329

Functions and variables for break loops and error handling / 332
Stack Backtrace / 334
Single-expression stepper / 337
Tracing / 338

The Trace tool / 339
Expressions used for tracing / 341

Advising / 346
The Inspector / 348

The Inspector menu / 349
Inspector functions / 350

The Apropos tool / 351
The Get Info tool / 353
The Processes tool / 355
Miscellaneous Debugging Macros / 355

This chapter discusses debugging tools in Macintosh Common Lisp. These
tools include compiler options, Fred commands, debugging functions, error-
signaling functions, functions to break or cancel operations, backtrace,
facilities to step through a program, trace functions, and an advise function. In
addition, any part of any MCL object can be inspected and, when appropriate,
edited within the Inspector.

You should read this chapter to familiarize yourself with the debugging
environment in Macintosh Common Lisp.

Debugging tools in Macintosh Common Lisp

Macintosh Common Lisp provides several tools to help programmers
examine and debug functions, source code, and environments:

■ compiler options to retain information useful for later programming

■ a set of Fred commands

■ debugging functions

■ a set of functions for signaling errors and aborting operations (these
functions may optionally enter a break loop)

■ a break-loop facility, which interrupts a program and allows you to
look at the stack and examine dynamic values before returning

■ a Stack Backtrace

■ a single-expression stepper

■ a trace function

■ an Inspector

The Tools menu contains most of these tools and the Fred Commands
window; the other tools are available through MCL expressions.

MCL debugging tools form an integrated whole, allowing you to look
at your code from a variety of perspectives. Figure 9-1 shows the MCL
debugging tools and their relationships. From each of the listed
windows you can examine code in the windows they point to.

■ Figure 9-1 MCL debugging tools

Here is what the various components of Figure 9-1 do.

Code

List Definitions
“Go to definition”

Search Files
“Select file to edit”

Edit Definitions

Documentation

Stack
BacktraceInspector

Apropos
314 Macintosh Common Lisp Reference

■ The Apropos window accepts one or two strings and a number of
options and finds all definitions containing the strings and matching
the options.

■ The Stack Backtrace window examines the state of the stack during a
break loop.

■ The Documentation window brings up documentation for Common
Lisp and MCL symbols.

■ The Inspector window allows you to examine all the components of
any data object.

■ The Edit Definitions window accepts the name of a definition and finds
its source code.

■ The List Definitions window lists all definitions in the current buffer
and allows you to pick one for editing.

■ Search Files lets you search files for the presence of a string.

When available, code is always the best documentation. Two keyboard
commands are often used to examine code.

■ Pressing Meta-period when the insertion point is within or next to an
expression in code allows you to examine its source code. You can
examine the source code of many MCL expressions.

■ Pressing Control-Meta and clicking an expression acts like pressing
Meta-period but also allows you to examine expressions within
Inspector windows.

Compiler options

The MCL compiler can optionally retain information useful for later
programming. It can also provide useful debugging information at
compile time. The behavior of the compiler is regulated by the global
variables listed in Table 9-1.
Chapter 9: Debugging and Error Handling 315

■ Table 9-1 Compiler options

Variable Purpose

(continued)

fasl-save-definitions Provides a default value for the :save-definitions keyword
argument to compile-file; determines whether lambda
expressions are saved in the compiled file.

Default is nil; lambda expressions are not saved in the
compiled file and are not available when the file is loaded.
If true, lambda expressions are saved. Compiled functions
without lambda expressions cannot be stepped.

fasl-save-doc-strings Provides a default value for the :save-doc-strings
keyword argument to compile-file; determines whether
documentation strings are saved in the compiled file.

Default is nil; documentation strings are not saved and are
not available when the file is loaded. If true, documentation
strings are saved in the compiled file and are available
through the Inspector and the documentation function
(bound to the keyboard command Control-X Control-D).

fasl-save-local-symbols Provides a default value for the :save-local-symbols
keyword argument to compile-file.

Default is nil; local symbols are not saved in the compiled
file. If true, local symbols are saved in the compiled file and
are available when the file is loaded. Generally increases
.fasl file size by about 15–20 percent.

record-source-file Determines whether compiler records source file of
definitions. The definition contains a pointer to the source
file. You can retrieve the definition by pressing Meta-period
when the insertion point is next to the symbol name.

Default is true; compiler records source file of all definitions.
Meta-period retrieves source code. If nil, no record is kept,
and Meta-period cannot retrieve source code.

save-definitions Determines whether compiled functions can be
uncompiled.

Default is nil; lambda expressions are not retained;
functions cannot be stepped through. If true, lambda
expressions are retained; functions can be stepped through.
316 Macintosh Common Lisp Reference

■ Table 9-1 Compiler options (continued)

Variable Purpose

Fred debugging and informational commands

Several Fred command keystrokes help the programmer get
information about MCL expressions and the MCL environment.

Remember that you access Meta commands by pressing the Option key.
You access Control commands by pressing the Control key (if your
keyboard has one) or by pressing Command or Command-Shift.

Several of these commands are on the Tools menu; those menu items
are listed in Table 9-2.

save-doc-strings Determines whether documentation strings are retained.

Default is nil; documentation strings are discarded. This
can save memory. If true, documentation strings are
retained.

save-local-symbols Determines whether names of arguments and local
variables are saved when functions are compiled.

Default is nil; information is discarded. If true, information
is retained, and *arglist-on-space* and backtrace
will show actual argument names.

warn-if-redefine Helps prevent accidental redefinition of a function defined
somewhere else.

Default is true; compiler issues a warning whenever a
function, macro, or variable is redefined from a new file. If
nil, compiler does not issue warnings when user functions
are redefined (but does when built-in functions are
redefined).

warn-if-redefine-kernel Helps prevent accidental redefinition of a built-in function.

Default is true; compiler signals a continuable error
whenever a built-in function is redefined. If nil, compiler
does not signal an error when built-in functions are
redefined. Use with caution.
Chapter 9: Debugging and Error Handling 317

■ Table 9-2 Fred debugging and informational commands

Purpose Keystroke/menu itemEffect

(continued)

Display Fred
commands

Control-?,
Fred Commands
on Tools menu

Brings up the Fred Commands window. This
window contains a list of all Fred keyboard
commands available in the global command
table. The list is regenerated each time the
window is created. The Fred Commands
window may be searched, saved, and printed.

Edit definition Meta-period,
Control-Meta-click,
Edit Definition
on Tools menu

Attempts to bring up the source code definition
for the symbol surrounding the insertion point.
If the symbol is defined in more than one source
file, the user is given a choice of definitions. If
the symbol is defined as a slot in a defclass,
Meta-period finds the approximate location of
the symbol. Search backward with Control-R to
find the location at which the symbol is defined.
This function works for most forms that are
defined with *record-source-file* set to
t.

Get argument list
information

Control-X
Control-A

Prints the argument list of the function bound
to the symbol surrounding the insertion point.
Argument list is displayed in the minibuffer if
the value of *mini-buffer-help-output*
is t; otherwise, it is displayed in the
standard-output stream. The ed-
arglist function works for built-in functions
and macros, and for most functions and macros
defined with *save-local-symbols* or
fasl-save-local-symbols set to t.
318 Macintosh Common Lisp Reference

■ Table 9-2 Fred debugging and informational commands (continued)

Purpose Keystroke/menu itemEffect

Here are some examples of using these Fred keyboard equivalents.

To perform macroexpansion with Control-X Control-M:
? (defmacro foo (x y)
 `(+ ,x ,y))
FOO
? (defmacro bar (z)
 `(foo ,z ,z))
BAR
? (foo 10 20);Control-X Control-M
(+ 10 20)

Get documentation for
current expression

Control-X
Control-D,
Documentation
on Tools menu

Opens a dialog box displaying the symbol
surrounding the insertion point and the
documentation string of the function bound to
that symbol. If no documentation string is
available, displays “No documentation
available.” This function works for built-in
functions and macros and for most forms
defined with *save-doc-strings* set to true.

Inspect current
expression

Control-X
Control-I

Inspects the current symbolic expression.

Macroexpand current
expression

Control-X
Control-M

Macroexpands the current expression with
macroexpand and pretty-prints the result to
standard-output.

Macroexpand current
expression repeatedly

Control-M Macroexpands the current expression
repeatedly with macroexpand-1 until the
result is no longer a macro call and pretty-
prints the result to *standard-output*.

Print information
about active window

Control–= Prints information about the current Fred
window to *standard-output*.

Read current
expression

Control-X
Control-R

Prints the result of reading the current symbolic
expression. This is useful for tracking read-time
bugs, particularly in expressions containing
backquotes.
Chapter 9: Debugging and Error Handling 319

? (bar 10);Control-X Control-M
(+ 10 10)

To perform macroexpansion with Control-M:
? (foo 10 20);Control-M
(+ 10 20)

? (bar 10);Control-M
(foo 10 10)
(+ 10 10)

To read the current expression with Control-X Control-R:
(print `(2 ,(+ 3 4) 6));<c-x c-r>
(print (cons 2 (cons (+ 3 4) '(6))))

#@(2 2);<c-x c-r>
131074

Debugging functions

The following functions and variables are useful when programming.
They provide information on the MCL programming environment and
aid in testing and tracking functions.

apropos [Function]

Syntax apropos string-or-symbol &optional package

Description The apropos function finds all interned symbols whose print names
contain string as a substring and prints the name, function definition, and
global value of each symbol. The value nil is returned. The result is
printed to *standard-output*.

The apropos function is not case sensitive.

The functionality of apropos is also available through Apropos on the Tools
menu. In the Apropos dialog box, you can type a symbol name or part of a
symbol name. The Apropos dialog box displays a scrollable list of symbol
names. Double-clicking one brings up an Inspector window for that symbol.
320 Macintosh Common Lisp Reference

Arguments string-or-symbol
Any string or symbol.

package A package within which to search for string-or-symbol.
When package is nil, all packages are searched.

Example
? (apropos 'bitmap)
BITMAP

$BITMAP.TOPLEFT, Value: 6

$BITMAP.TOP, Value: 6

$BITMAP.LEFT, Value: 8

_SCRNBITMAP, Def: MACRO FUNCTION, Value: 43059

$AFPBITMAPERR, Value: -5004

$ICONBITMAP, Value: 2574

:BITMAP, Value: :BITMAP

◆ Note: If a symbol is given, it is interned (that is, a symbol is created and
installed in the current package) and therefore the symbol always
appears in the output of apropos. So, for example, typing (apropos
'i-just-made-this-up) retrieves (i-just-made-this-up).
This can confuse new programmers who are using apropos to check
on the existence of a symbol. As you would expect, the Apropos dialog
box does not intern strings typed into it as symbols; however, after a
previously nonexistent symbol is interned with apropos, the Apropos
dialog box will find it.

apropos-list [Function]

Syntax apropos-list string-or-symbol &optional package

Description The apropos-list function returns a list of all symbols whose print
names contain string-or-symbol as a substring.

If a symbol is given, it is interned and therefore always appears in the list
returned by apropos-list. So, for example, typing (apropos-list 'i-
made-this-up-too) retrieves (i-made-this-up-too).

The apropos-list function is not case sensitive.

Arguments string-or-symbol
Any string or symbol.

package A package within which to search for string-or-symbol.
When package is nil, all packages are searched.

Example
? (apropos-list 'bitmap)
Chapter 9: Debugging and Error Handling 321

(:BITMAP $ICONBITMAP $AFPBITMAPERR _SCRNBITMAP $BITMAP.LEFT
$BITMAP.TOP $BITMAP.TOPLEFT BITMAP)

? (setq make-syms (apropos-list 'bitmap))
(:BITMAP $ICONBITMAP $AFPBITMAPERR _SCRNBITMAP $BITMAP.LEFT
$BITMAP.TOP $BITMAP.TOPLEFT BITMAP)

? (setq make-syms (sort make-syms #'string<
 :key #'symbol-name))
($AFPBITMAPERR $BITMAP.LEFT $BITMAP.TOP $BITMAP.TOPLEFT
$ICONBITMAP :BITMAP BITMAP _SCRNBITMAP)
? (pprint make-syms)
($AFPBITMAPERR

$BITMAP.LEFT

$BITMAP.TOP

$BITMAP.TOPLEFT

$ICONBITMAP

:BITMAP

BITMAP

_SCRNBITMAP)

arglist [Function]

Syntax arglist symbol &optional include-bindings use-help-file

Description The arglist function returns two values, the argument list of symbol and
how the list was computed. The second value can be one of :definition,
:declaration, :analysis, :unknown, or nil. The value
:definition means that *save-definitions* was true when the
function was compiled; the value :declaration means that either the
argument list was found in the MCL Help file or you declared the argument
list with (setf (arglist symbol) arglist). The value :analysis means
that the argument list was computed from information stored with the
function; :unknown means that the symbol was bound to a function, but no
argument list information could be determined; and nil means that the
symbol was not bound to a function.

Arguments symbol A symbol.
include-bindings

A value. If this value is specified and true, then the default
values of optional and keyword parameters are included,
if known.

use-help-file A Boolean value. If true (the default), the argument list is
taken from the MCL Help file. If nil, the argument list is
computed directly from information stored within the
function. (This parameter is useful if you suspect that the
MCL Help file may be incorrect.)
322 Macintosh Common Lisp Reference

documentation [Generic function]

Syntax documentation (x thing) &optional doc-type

Description The generic function documentation returns the documentation string
of doc-type for x. If x is a method object, a class object, a generic function
object, a method combination object, or a slot-description object, doc-type
may not be supplied, or an error is signaled. If x is a symbol or a list of the
form (setf symbol), doc-type must be supplied. See Table 9-3 for the
documentation type that should be supplied for various MCL constructs.

Documentation strings can be changed with the Common Lisp generic
function (setf documentation), documented on page 842 of Common Lisp:
The Language.

Documentation strings are retained only if the value of *save-doc-
strings* is true when the definition occurs. If no documentation string is
available, documentation returns nil.

Arguments x A method object, class object, generic function object,
method combination object, slot-description object,
symbol, or list of the form (setf symbol).

doc-type One of the symbols variable, function, structure,
type, or setf.

Example
? (documentation 'view-draw-contents 'function)

"The event system calls this generic function whenever a view
needs to redraw any portion of its contents. For a view, the
function is applied focused on the view; for a simple view,
it is focused on the view's container."

? (documentation 'window 'type)

"The window class, from which all window objects inherit.
Windows in turn inherit from view. All windows are streams."

Table 9-3 lists the values of doc-type that should be supplied with
various MCL constructs.
Chapter 9: Debugging and Error Handling 323

■ Table 9-3 Constructs and their documentation types

Construct Documentation type

Function function

Generic function function

Special form function

Macro function

Variable variable

Constant variable

defstruct structure structure

Class object type

Type specifier type

defsetf definition setf

define-setf-method definition setf

Method combination method-combination

edit-definition-p [Function]

Syntax edit-definition-p name &optional type specializers qualifiers

Description The function edit-definition-p returns source file information for a
symbol, method, or function.

It returns five values: a list of definition types and source file names where the
definition occurs (the first file in the list is the one containing the most recent
definition); the name of name; the definition type found (one of function,
method, structure, class, and so on); a list of its method qualifiers, such
as (:before), (:after), or (:around), and a list of the method specializer
classes. If name is not the name of a method, the two last values are nil and t.

Arguments name A symbol, method, or function.
type The type of definition desired. Allowable values are any

data type that can have a source file: for example,
function, method, structure, class, or
variable.The default value, t, finds whatever exists.

specializers A list of specializer classes for a method. Giving this
argument a non-nil value forces the value of the type
argument to be 'method.

qualifiers A list of qualifiers for a method, for example,
(:before), (:after), or (:around). The default
value is t, which finds a method with any qualifier.
324 Macintosh Common Lisp Reference

Example
? (edit-definition-p 'pop-up-menu)

((CLASS . "ccl:library;pop-up-menu.lisp"))

POP-UP-MENU

T

NIL

T

? (edit-definition-p 'view-draw-contents 'method '(basic-
editable-text-dialog-item) :after)

NIL

VIEW-DRAW-CONTENTS

METHOD

(BASIC-EDITABLE-TEXT-DIALOG-ITEM)

:AFTER

help-output [Variable]

Description The *help-output* variable specifies the stream to which
documentation string and argument list information is printed when
accessed through Fred keyboard commands or the Inspector. This variable
is initially bound to *standard-output*.

print-call-history [Function]

Syntax print-call-history

Description The function print-call-history writes a full Stack Backtrace to
debug-io.

select-backtrace [Function]

Syntax select-backtrace

Description The function select-backtrace opens a Stack Backtrace window if it is
meaningful to backtrace. If there is no context for backtracing, the function
signals an error.

room [Function]

Syntax room &optional detailed-p
Chapter 9: Debugging and Error Handling 325

Description The room function prints information on the amount of space available in
the Lisp operating system.

Argument detailed-p A value indicating how much information to print. If this
value is nil—the default—minimal information is
printed. If it is non-nil, more detailed information is
printed.

Example
? (room)

There are at least 1356752 bytes of available RAM.

 Total Size Free Used

Mac Heap: 540576 (527K) 132600 (129K) 407976
(399K)

Lisp Heap: 2097152 (2048K) 1224152 (1195K) 849016
(829K)

 (Static): 458752 (448K)

Stacks: 218100 (212K)

? (room t)

There are at least 1344548 bytes of available RAM.

 Total Size Free Used

Mac Heap: 540576 (527K) 132604 (129K) 407972
(399K)

Lisp Heap: 2097152 (2048K) 1211944 (1183K) 860736
(840K)

 (Static): 458752 (448K)

Stacks: 218100 (212K)

Markable objects: 777112 (758K) dynamic, 212776 (207K)
static.

Immediate objects: 83624 (81K) dynamic, 242992 (237K)
static.

inspect [Function]

Syntax inspect thing

Description The inspect function inspects thing.
326 Macintosh Common Lisp Reference

Macintosh Common Lisp supports the Common Lisp inspect function with
a window-based Inspector. In addition to calling the inspect function, there
are two other ways of invoking the Inspector directly: choosing Inspect from
the Tools menu, or giving the keyboard equivalent, Control-X Control-I. In
addition, double-clicking a symbol name from the Apropos dialog box, or
choosing a symbol and clicking the Inspect button, invokes the Inspector on
that symbol.

Argument thing Any Lisp data object.

Example
? (inspect 'windows)

#<INSPECTOR-WINDOW "WINDOWS" #x467281>

top-inspect-form [Function]

Syntax top-inspect-form

Description The top-inspect-form function returns the form being inspected by
the active Inspector window.

Example
? (top-inspect-form)

WINDOWS

For full details on the Inspector, see “The Inspector” on page 348.

Error handling

Macintosh Common Lisp uses the Common Lisp condition system,
which reconceptualizes and adds to Common Lisp’s previous error-
detection and error-handling capabilities.

A condition is an interesting situation that has been detected and
announced within a program. An error is a condition from which the
program cannot continue normally, but requires some sort of
intervention, either by program control or from the user.
Chapter 9: Debugging and Error Handling 327

Most MCL error-handling functions now follow the definitions of those
functions given in Common Lisp: The Language, Chapter 24, “Errors,”
and Chapter 29, “Conditions.” (Note that pages 886–887 of Common
Lisp: The Language supersede the earlier discussion of error and
cerror in Chapter 24 of the same book.) MCL extensions to those
functions are described next.

Functions extending Common Lisp error handling

The following functions extend the Common Lisp condition system.

abort-break [Function]

Syntax abort-break

Description If the current read loop is waiting for input, the Common Lisp function
abort calls the non–Common Lisp function abort-break, which
decrements the abort level by 1. If there is input in the current read loop,
the Common Lisp function abort calls the abort restart.

cancel [Function]

Syntax cancel

Description The cancel function throws to the nearest catch-cancel. (Described in
“Simple turnkey dialog boxes” on page 239.) This function is generally
called when the user clicks Cancel in a modal dialog box.

For information on the syntax of Common Lisp throw and catch, see
Common Lisp: The Language, in particular page 192.
328 Macintosh Common Lisp Reference

ed

op
Break loops and error handling

At any point during an MCL program, program execution may be
suspended and control passed to a break loop. A break loop behaves
like the top-level read-eval-print loop. However, when you enter a
break loop you do not exit your program and return control to the top
level (as abort does). Instead, a break loop suspends your program
and allows interaction on top of your program. From a break loop, you
can resume the program or return to the top level.

Figure 9-2 shows the execution stack of Macintosh Common Lisp.
Newer items are added to the bottom. The diagrams show that break
loops add new areas to the stack, but abort and continue remove
areas from the stack. New items are added to the bottom.

■ Figure 9-2 Effects on the stack of break, abort, and continue

Within a break loop, the MCL question mark prompt is replaced by a
number and an angle bracket. Expressions can be executed, just as they
are in the normal Listener loop. Because the break loop runs on top of
the interrupted program, all global variables have the values they had
when the interrupted program was suspended, as the following code
shows.

read-eval-print loop

User code in execution

read-eval-print loop

abort

read-eval-print loop

User code in execution

break

read-eval-print loop

User code suspended

break loop

New user code
in execution

User code resum

read-eval-print lo

continue
Chapter 9: Debugging and Error Handling 329

? *print-case*
:downcase
? *load-verbose*
t
? (defun show-specials ()

 (let ((*print-case* :upcase)

 (*load-verbose* nil))

 (break)

 (print "Now we have continued.")

 t))

show-specials

? (show-specials)

>Break:

> While executing: SHOW-SPECIALS

> Type Command-/ to continue, Command-. to abort.

> If continued: Return from BREAK.

See the Restarts… menu item for further choices.

1 > *print-case*

:UPCASE

1 > *load-verbose*

NIL

1 > (continue)

Continuing...

"Now we have continued."

t

? *print-case*

:downcase

Break loops retain the dynamic environment of the interrupted
program (that is, the values of global variables), but they do not retain
the lexical environment of the interrupted program. For this reason,
forms that you type into the break loop do not have access to the lexical
variables of the interrupted program, as shown in the following code.
(You can look at the lexical variables with the Stack Backtrace,
described in “Stack Backtrace” on page 334.)
? (defun double (num)

 (unless (numberp num)

 (break))

 (+ num num))

DOUBLE

? (double 5)

10

? (double 'ten)

>Break:

> While executing: DOUBLE
330 Macintosh Common Lisp Reference

> Type Command-/ to continue, Command-. to abort.

> If continued: Return from BREAK.

See the Restarts… menu item for further choices.

1 > num

> Error: Unbound variable: NUM

> While executing: SYMBOL-VALUE

> Type Command-/ to continue, Command-. to abort.

> If continued: Retry getting the value of NUM.

See the Restarts… menu item for further choices.

2 > (abort-break)

Aborted

1 > (abort-break)

Aborted

Break loops may be nested; that is, you can enter a break loop from a
break loop, and so on. The current level is indicated by the number in
the Listener prompt (see Figure 9-3).

■ Figure 9-3 Nesting of break loops

You can enter a break loop explicitly by calling the function break or
cerror. In addition, if the value of *break-on-errors* is true,
Macintosh Common Lisp enters a break loop whenever an error is
signaled. If the value of *break-on-warnings* is true, Macintosh
Common Lisp enters a break loop whenever warn is called. These
functions and variables are described in “Functions and variables for
break loops and error handling” on page 332.

Break is also available as a command on the Lisp menu.

read-eval-print loop

User code suspended

break loop 1

New user code
suspended

break loop 2

?
> Break:

(break)

> Type Command-/ to continue, Command-. to abort.
1 >
> Break:

(break)

> Type Command-/ to continue, Command-. to abort.
2 >
Chapter 9: Debugging and Error Handling 331

There are two ways to leave a break loop: by calling continue and by
calling abort (see Figure 9-4). Calling continue resumes the program
from the point at which it was interrupted. Calling abort returns to the
previous read loop. This may be the top-level loop or a prior break loop.
In the case of abort, the suspended program is not resumed.

Abort and Continue are available as commands on the Lisp menu. You
can also invoke abort at any point by pressing Command-period.
Within a break loop, you can invoke continue by pressing Command-
slash (Command-/).

■ Figure 9-4 Two ways to leave a break loop

Functions and variables for break loops and error handling

The following functions and variables control break loops and error
handling.

break [Function]

Syntax break &optional format-string &rest arguments

Description The break function prints the message specified by format-string and
arguments and enters a break loop. It returns nil when continued.

The break function can also be invoked through the Lisp menu. This provides
a convenient method for suspending a program at any point of execution.

read-eval-print loop

User code suspended

break loop

User code resumed

read-eval-print loop
continue

abort read-eval-print loop
332 Macintosh Common Lisp Reference

If break is called during the dynamic extent of a call to without-
interrupts, no action is taken.

Arguments format-string A format control string used to construct the break
message.

arguments Zero or more format arguments used to construct the
break message.

continue [Function]

Syntax continue &optional condition

Description The continue function resumes execution of the code suspended by the
most recent call to break or cerror. If there have been no calls to break
or cerror, continue simply returns to the top level. If condition is
present, the restart for condition is invoked.

Argument condition A condition.

break-on-errors [Variable]

Description The *break-on-errors* variable determines whether Macintosh
Common Lisp enters a break loop when an error is signaled. The default
value is true.

If the value of this variable is true, then Macintosh Common Lisp enters a break
loop when an error is signaled.

If the value of this variable is nil, then errors simply cause a return to the read-
eval-print loop.

break-on-warnings [Variable]

Description The *break-on-warnings* variable determines whether Macintosh
Common Lisp enters a break loop when a warning is issued. The default
value is nil.

If the value of this variable is true, then Macintosh Common Lisp enters a break
loop when a warning is issued.

If the value of this variable is nil, then warnings do not interrupt program flow.
Chapter 9: Debugging and Error Handling 333

backtrace-on-break [Variable]

Description The *backtrace-on-break* variable determines whether Macintosh
Common Lisp displays the Stack Backtrace whenever it enters a break
loop. The default value is nil.

If the value of this variable is true, then Macintosh Common Lisp displays the
Stack Backtrace window.

If the value of this variable is nil, then you must choose Backtrace from the Tools
menu to see the Stack Backtrace dialog box.

error-print-circle [Variable]

Description In break or error loops, *print-circle* is set to the value of *error-
print-circle*. The initial value is t.

Stack Backtrace

Beyond print-call-history, which prints a backtrace to *debug-
io*, Macintosh Common Lisp provides a Stack Backtrace dialog box.

When inside a break loop, the Stack Backtrace command lets you
examine the state of the suspended program. To see the Stack Backtrace
dialog box, choose Backtrace from the Tools menu when you are in a
break loop.

The Stack Backtrace shows the functions awaiting return values as well
as the local variables of these functions (if the functions were compiled
with *save-local-symbols* set to true). You can easily access and
set the values in a stack frame. Finally, information on the program
counter and stack frame address is given.

Certain internal functions are not shown in the Stack Backtrace by
default. You can control this behavior, and the set of functions
considered internal.

The Stack Backtrace dialog box shows two tables. The upper table
shows the functions that are pending on the stack. The lower table is
initially blank. When you single-click any function in the upper table,
the lower table displays that function’s stack frames. You can edit
values in the lower table (but do so with caution).
334 Macintosh Common Lisp Reference

Below the tables are three pieces of information about the frame: the
number of values in the frame, the memory address of the frame, and
the program counter within the function where execution has been
suspended. The memory address is useful for low-level system
debugging. You can use the program counter with disassemble to
locate the point of a break within a function.

Figure 9-5 and the code that follows it show editing in the Stack
Backtrace dialog box.

■ Figure 9-5 A Stack Backtrace dialog box

Here is the code that produced the Stack Backtrace dialog box in Figure
9-5.
? (defun foo (x y)
 (let ((z 10))
 (break)
 (+ x y z)))
foo
? (foo 10 20)
> Break:
> Type Command-/ to continue,
Command-. to abort.

Single-click foo, then edit within the Stack Backtrace window:
Chapter 9: Debugging and Error Handling 335

1 > (local 1)
20
1 > (setf (local 1) 50)
50
1 > (continue)
Continuing...
70

This only works if the value of *compile-definitions* was true
when foo was compiled. Otherwise, the result is still 40.

Double-clicking a function in the top table causes the function object to
be inspected, giving you access to edit-definition,
documentation, arglist, disassemble, and uncompile-
function.

Because Macintosh Common Lisp supports tail recursion, any function
that makes a tail-recursive call will not appear in the backtrace. To ease
debugging, you can disable tail recursion with compiler declarations.

The stack frame in the lower table shows the names of local variables, if
these were retained at compile time. If these were not retained, the
parameters are listed as required, optional, keyword, or rest. You can
use the local macro to access the values of these frames. In addition,
you can double-click a value to inspect it.

local [Macro]

Syntax local indicator

Description The macro local returns the value in the current stack frame of the slot
given by indicator. This macro can be used only when a Stack Backtrace
dialog box is visible and when a frame is selected.

Argument indicator A symbol or number indicating a slot in the stack frame.
A symbol can be used if the frame includes local symbol
names and if the symbol is unique in the frame.
Otherwise, a number giving the position in the frame
should be used.

set-local [Macro]

Syntax set-local indicator new-value

Description The set-local macro changes the value at the specified indicator to new-
value.
336 Macintosh Common Lisp Reference

You can use set-local (or local with setf) to modify a value in a stack
frame. Modify these values with caution, however, because the compiler may
have made assumptions based on the initial values.

Arguments indicator A symbol or number indicating a slot in the stack frame.
A symbol can be used if the frame includes local symbol
names and if the symbol is unique in the frame.
Otherwise, a number giving the position in the frame
should be used.

new-value The new value of the indicator.

inspector::*backtrace-hide-internal-functions-p*

[Variable]

inspector::*backtrace-internal-functions* [Variable]

Description If inspector::*backtrace-hide-internal-functions-p* is
true (the default), internal stack frames are not shown in the Backtrace.

inspector::*backtrace-internal-functions* contains a list of
functions considered to be “internal”. You may add functions to and remove
them from this list.

Single-expression stepper

The single-expression stepper allows you to examine a single form,
expression by expression.

The step macro can be used on compiled functions only if their
uncompiled definitions have been retained. If there is no uncompiled
definition for a function, it is treated as an atomic unit as it is evaluated.
A compiled function call is executed as a whole rather than being
evaluated form by form. (This is how the step macro treats built-in
functions.)

Function definitions are retained if the function is compiled with the
save-definitions variable set to t or if a file is compiled with the
fasl-save-definitions variable set to t. If the function was
compiled with *save-definitions* set to nil, it must be
recompiled or reloaded with *compile-definitions* set to nil
before it can be evaluated.
Chapter 9: Debugging and Error Handling 337

Because evaluation occurs in a null lexical environment, step is
usually called only from the top level. If it is called from within a
function, it does not have access to the local environment in which it
was called. However, internal stepping can be invoked through the
trace macro, described in “Tracing” on page 338.

It is not generally possible to step through code that requires the use of
without-interrupts or code that uses the Macintosh graphics
interface.

step [Macro]

Syntax step form

Description The step macro evaluates form expression by expression, under user
control.

Argument form Any Lisp form.

step-print-level [Variable]

step-print-length [Variable]

Description The *step-print-level* and *step-print-length* variables are
used to set the values of *print-level* and *print-length* during
step evaluation.

Tracing

Tracing is useful when you want to find out why a function behaves in
an unexpected manner, perhaps because incorrect arguments are being
passed.

Tracing causes actions to be taken when a function is called and when
it returns. The default tracing actions print the function name and
arguments when the function is called and print the values returned
when the function returns.

Other actions can be specified. These include entering a break loop
when a function is entered or exited, or stepping the function. Trace
actions may be conditional.
338 Macintosh Common Lisp Reference

Several functions can be traced at one time.

When a traced function is traced again, the new trace actions replace the
former ones. When a traced function is redefined by evaluation in a
buffer, the trace actions are transferred from the old definition to the
new definition. When a traced function is redefined while loading a file,
the function is untraced and a warning is issued.

Macros and special forms cannot be traced. Functions that are compiled
inline cannot be traced (see Common Lisp: The Language, pages 229–230).
Note that, by default, self-recursive calls are compiled as inline
branches. To effectively trace a function with self-recursive calls, you
should declare it not inline.

Tracing is available both through the Trace menu-item on the Tools
menu, and through a number of Lisp macros and functions.

The Trace tool

The Trace tool is an interactive interface to the MCL trace mechanism.
This tool calls the trace macro. The argument to the trace function is
the string in the Name text edit field. The following figure shows the
dialog box for the Trace tool.
Chapter 9: Debugging and Error Handling 339

■ Figure 9-6 The Trace dialog box

The Specializers type-in pop-up menu specifies a parameter specializer
for the function; the Qualifier pop-up menu specifies an auxiliary
method qualifier, which is one of None, :before, :after, or
:around; the Package pop-up menu specifies the package that defines
the function.

The On Entry and On Exit pop-up menus specify different courses of
actions. Items in the On Entry menu are Print Name and Args, Break, or
No Action; items in the On Exit menu are Print Name and Values,
Break, or No Action. The Step pop-up menu specifies whether the
function should be stepped, or simply executed.

Untrace removes the trace from the most recently traced function.

Untrace All pops up a list of all functions currently being traced and the
item Untrace All. You may select the function from which to
remove the trace, or remove all traces.
340 Macintosh Common Lisp Reference

Expressions used for tracing

The following macros, functions and variables are used to invoke and
control tracing.

trace [Macro]

Syntax trace {spec | (spec {option modifier})}

Description The trace macro encapsulates the function or method specified by each
spec, causing the actions specified by the options. When no options are
specified, the default actions print arguments on entry and values on exit.

Invoking (trace) without arguments returns a list of the functions currently
being traced. If no functions are currently being traced, (trace) returns nil.

Arguments spec The specification of the function to be traced. This is either
a symbol that is the name of a function or generic
function, or an expression of the form (setf symbol), or
a specific method of a generic function in the form
(:method symbol {qualifiers} (specializer
{specializer}*)).

option An option that specifies an action to be performed. The
following options and their modifiers are supported:

:before Specifies the action to be taken before the traced function
is called. The:before keyword must be followed by a
modifier:

:print Prints the name and arguments to the function before the
function is called.

:break Prints the name and arguments to the function and enters
a break loop before the function is called. You can
examine the Stack Backtrace, perform operations in the
Listener, and continue if desired.

lisp-function
If the :before option is a function, it is called before the
traced function is called. The arguments to lisp-function
are the name of the traced function and the arguments
passed to the traced function.

:after Specifies the action to be taken after the traced function
returns. This keyword must be followed by a modifier,
which should be one of the following:

:print Prints the name of the function and the returned values.
Chapter 9: Debugging and Error Handling 341

:break Prints the name of the function and the returned values,
and enters a break loop. You can examine the Stack
Backtrace, perform operations in the Listener, and
continue if desired.

lisp-function
If the :after option is a function, it is called after the
traced function returns. The arguments are the name of
the traced function and the values returned by the traced
function.

:step Specifies whether the traced function should be stepped
when it is run. For this option to be effective, the function
needs to have been compiled with the variable *save-
definitions* set to t or loaded with *compile-
definitions* set to nil. In addition, stepping will not
work if the most recent definition comes from a .fasl
file unless the file was compiled with *fasl-save-
definitions* set to true.
The :step keyword must be followed by a modifier,
which is either t or a function whose arguments are the
name of the traced function and the arguments passed to
the traced function. If it is t or if the function returns non-
nil, then the traced function is stepped; otherwise it is
run without stepping.

Examples

Here is an example of tracing the function fact.
? (defun fact (num)

 (declare (notinline fact))

 (if (= num 0)

 1

 (* num (fact (- num 1)))))

FACT

? (trace fact)

NIL

? (fact 5)

 Calling (FACT 5)

 Calling (FACT 4)

 Calling (FACT 3)

 Calling (FACT 2)

 Calling (FACT 1)

 Calling (FACT 0)

 FACT returned 1

 FACT returned 1

 FACT returned 2

 FACT returned 6
342 Macintosh Common Lisp Reference

 FACT returned 24

 FACT returned 120

120

Here are some examples of the syntax of trace and their results. This
prints before but not after.
? (trace (fact :before :print))

? (fact 5)

 Calling (FACT 5)

 Calling (FACT 4)

 Calling (FACT 3)

 Calling (FACT 2)

 Calling (FACT 1)

 Calling (FACT 0)

120

This example breaks before and prints after.
? (trace (fact :before :break

 :after :print))

This example breaks on entry with an odd argument.
? (trace (fact :before

 #'(lambda (func &rest args)

 "only break if number is odd"

 (if (evenp (car args))

 (format t "~&Calling ~s~%"

 (cons func args))

 (break "on calling ~s"

 (cons func args))))))

This example breaks before an instance of the class foo is initialized.
? (trace ((:method initialize (foo)) :before :break))

This example steps through the function.
? (trace (fact :step t))

This example steps through even invocations of the function.
? (trace (fact :step

 (lambda (name &rest args)

 (declare (ignore name))

 (evenp (car args)))))

untrace [Macro]

Syntax untrace {spec}
Chapter 9: Debugging and Error Handling 343

Description The untrace macro stops each spec from being traced. Notices will not be
printed when the function enters or returns. The macro returns a list of the
functions that are no longer being traced.

If no specs are specified, all traced functions are untraced.

If you untrace a function that wasn’t traced in the first place, no action is taken.

Argument spec The specification of the function to be untraced. This is
either a symbol that is the name of a function or generic
function, or an expression of the form (setf symbol), or
a specific method of a generic function in the form
(:method symbol {qualifiers} (specializer {specializer})).

trace-print-level [Variable]

trace-print-length [Variable]

Description The *trace-print-level* and *trace-print-length* variables
are used to set the values of *print-level* and *print-length*
during trace operations.

trace-level [Variable]

Description The *trace-level* variable specifies the depth of calls to the traced
function. Each time the traced function is called, this number is
incremented. Each time the traced function returns, it is decremented.

Example

This example begins stepping fact after the first five calls.
? (trace (fact :step
 (lambda (number &rest args)
 (declare (ignore number args))
 (> *trace-level* 5))))

FACT

trace-max-indent [Variable]

Description The *trace-max-indent* variable specifies the maximum number of
spaces to indent trace output. (Normally, trace output
is indented one space for each level of nesting.) The default value is 40.
344 Macintosh Common Lisp Reference

trace-tab [Function]

Syntax trace-tab

Description The trace-tab function outputs the appropriate number of spaces and
vertical bars in *trace-output*, given the current value of *trace-
level*.

trace-bar-frequency [Variable]

Description The *trace-bar-frequency* variable determines whether and how
often vertical bars are printed in trace output. If the value of *trace-
bar-frequency* is nil (the default value), no vertical bars are printed.

Example
? (trace fact)
nil
? (setq *trace-bar-frequency* 2)
2
? (fact 5)
Calling (fact 5)
|Calling (fact 4)
| Calling (fact 3)
| |Calling (fact 2)
| | Calling (fact 1)
| | |Calling (fact 0)
| | |fact returned 1
| | fact returned 1
| |fact returned 2
| fact returned 6
|fact returned 24
fact returned 120
120
? (setq *trace-bar-frequency* nil)
nil
? (fact 3)
Calling (fact 3)
 Calling (fact 2)
 Calling (fact 1)
 Calling (fact 0)
 fact returned 1
 fact returned 1
 fact returned 2
fact returned 6
6

Chapter 9: Debugging and Error Handling 345

Advising

The advise macro can be thought of as a more general version of
trace. It allows code that you specify to run before, after, or around a
given function, for the purpose of changing the behavior of the
function. Each piece of added code is called a piece of advice. Each piece
of advice has a unique name, so that you can have multiple pieces of
advice on the same function, including multiple :before, :after,
and :around pieces of advice.

The unique :name and the :when keyword serve to identify the piece
of advice. A later call to advise with the same values for the :name
and :when keywords replaces the existing piece of advice, but a call
with different values does not.

advise [Macro]

Syntax advise spec form &key when name define-if-undefined

Description The advise macro adds a piece of advice to the function or method
specified by spec according to form.

Arguments spec The specification of the function on which to put the
advice. This is either a symbol that is the name of a
function or generic function, or an expression of the form
(setf symbol), or a specific method of a generic function
in the form (:method symbol {qualifiers} (specializer
{specializer})).

form A form to execute before, after, or around the advised
function. The form can refer to the variable arglist that is
bound to the arguments with which the advised function
was called. You can exit from form with (return).

name A unique name that identifies the piece of advice.
when An argument that specifies when the piece of advice is

run. There are three allowable values. The default is
:before, which specifies that form is executed before the
advised function is called. Other possible values are
:after, which specifies that form is executed after the
advised function is called, and :around, which specifies
that form is executed around the call to the advised
function. You should use (:do-it) in form to indicate
invocation of the original definition.
346 Macintosh Common Lisp Reference

define-if-undefined
An argument that determines whether to define the
advised function if it is undefined. The default is nil, in
which case an error is signaled if the function is
undefined.

Examples

Here are some examples of the use of advise.

The function foo, already defined, does something with a list of
numbers. The following code uses a piece of advice to make foo return
zero if any of its arguments is not a number. Using :around advice,
you can do the following:
(advise foo (if (some #'(lambda (n)

 (not (numberp n)))

 arglist)

 0

 (:do-it))

 :when :around :name :zero-if-not-nums)

To do the same thing using a :before piece of advice:
(advise foo (if (some #'(lambda (n)

 (not (numberp n)))

 arglist)

 (return 0))

 :when :before :name :zero-if-not-nums)

unadvise [Macro]

Syntax unadvise spec &key when name

Description The unadvise macro removes the piece or pieces of advice for everything
matching spec, when, and name. When the value of spec is t and the values
of when and name are nil, unadvise removes every piece of advice;
when spec is t, when is nil, and name is non-nil, unadvise removes all
pieces of advice with the given name.

Arguments spec The specification of the function for which pieces of
advice are to be removed. This is either a symbol that is
the name of a function or generic function, or an
expression of the form (setf symbol), or a specific
method of a generic function in the form (:method
symbol {qualifiers} (specializer {specializer})).

when The specification of the when value for the piece of advice
to be removed. The allowable values are the same as those
for advise.
Chapter 9: Debugging and Error Handling 347

name The unique name of the piece of advice to be removed.

advisedp [Macro]

Syntax advisedp spec &key when name

Description The advisedp macro returns a list of existing pieces of advice that match
spec, when, and name. When the value of spec is t and the values of when
and name are nil, advisedp returns all existing pieces of advice.

Arguments spec The specification of the function to check for pieces of
advice. This is either a symbol that is the name of a
function or generic function, or an expression of the form
(setf symbol), or a specific method of a generic function
in the form (:method symbol {qualifiers} (specializer
{specializer})).

when The specification of the when value for the piece of advice
to be removed. The allowable values are the same as those
for advise.

name A unique name that identifies the piece of advice.

The Inspector

Macintosh Common Lisp supports the Common Lisp inspect
function with a window-based Inspector.

The Inspector lets you look quickly at any component of one or more
data objects. For instance, you can use it to look at the current state of
the system data. Double-click any form or component of a form in an
Inspector window to bring up a window with a definition of the form
or component; double-click any item in that window to bring up its
definition, and so on.

Because objects are editable in Inspector windows, you can change the
state of system data and other components on the fly. You should be
careful about doing so, however; it is generally safe to change the value
of a global variable in the Inspector, but you should use the standard
interface functions to change the values associated with object
keywords.
348 Macintosh Common Lisp Reference

To see the Inspector, choose Inspect from the Tools menu.You can also
call inspect on a Lisp object or use the keystroke command Control-
X Control-I. If you have an extended keyboard, you can also press the
Help key. When you choose Apropos from the Tools menu and double-
click a symbol name, Macintosh Common Lisp creates an Inspector
window containing information about that symbol.

The Inspector menu

The Inspector menu-item on the Tools menu has a number of sub-
menus. These submenus and their actions are described in the
following table.

■ Table 9-4 Options in Inspector Central

Inspector option Effect

Record Types Displays a window that lists all record types.

Record Field Types Displays a window that lists all record field types.

Inspector Help Displays a window giving brief help on Inspector commands.

Inspector History Lists all Lisp objects that have been inspected. Double-clicking one of
them creates an Inspector window showing its definition. To begin
keeping a history, evaluate the form shown in the initial window.

Disk Devices Displays a window listing the names of all currently active devices.

Logical Hosts Displays an Inspector window listing all logical hosts and their physical
equivalents.

Packages Displays an Inspector window that inspects the list returned by the
Common Lisp function (list-all-packages).

package Displays a window that inspects the value of the Common Lisp variable
package.

readtable Displays a window that inspects the value of the Common Lisp variable
readtable.
Chapter 9: Debugging and Error Handling 349

Inspector functions

The following functions are used with the Inspector.

inspect [Function]

Syntax inspect thing

Description The inspect function inspects thing.

Argument thing Any Lisp data object.

Example
? (defun foo (x y)

 (let ((z 10))

 (break)

 (+ x y z)))

FOO

? (inspect 'foo)

#<INSPECT-DIALOG "Symbol: FOO" #x5DE9F9>

top-inspect-form [Function]

Syntax top-inspect-form

Description The top-inspect-form function returns the form being inspected by
the active Inspector window, or nil if there are no active Inspector
windows.

inspector-disassembly [Variable]

Description The *inspector-disassembly* variable specifies whether the
Inspector displays a disassembly when you inspect a function.

If the value of this variable is true, the Inspector displays a disassembly.

If the value of this variable is nil (the default), no disassembly is displayed.
350 Macintosh Common Lisp Reference

@ [Variable]

Description The @ variable is bound to the last object that was cut or copied. It is used
primarily to communicate values between an Inspector window and the
Listener.

The Apropos tool

The Apropos tool performs apropos on a user specified string. The
Name scrolling-list displays all symbols of a specified type that
apropos found containing the string.

The Type pop-up menu specifies the symbol's type. Items in the Type
pop-up menu are Function, Variable, Class, Macro, and All. Only
symbols with values of that type will be shown.

Items in the Package pop-up menu limit your request to symbols in
particular packages.

The boolean operators And, Or, and Not allow you to display symbols
which contain the specificed combinaton of two strings.

The Specializers type-in pop-up menu specifies a parameter specializer
for the symbol. The Qualifier pop-up menu specifies an auxiliary
method qualifier with options None, :before, :after, and :around.
Chapter 9: Debugging and Error Handling 351

■ Figure 9-7 The Apropos dialog box

The buttons in the Apropos dialog box have the following functions:

Apropos Performs apropos on a string in the Contains text edit field.

Inspect Displays an Inspector window for the symbol highlighted in the Name
scrolling-list.

Source Attempts to find the source code for the definition of the symbol
highlighted in the Name scrolling-list. If the symbol was defined when
the value of the variable *record-source-file* was true, the
source code file is known.

Callers Displays a list of functions that call the symbol highlighted in the Name
scrolling-list, and allows you to select and edit a caller.

Doc Displays the documentation string for the symbol highlighted in the
Name scrolling-list, if a documentation string is available.
Documentation strings are available if the symbol was defined when
the value of *save-doc-strings* was true and if the symbol
definition contains a documentation string. Documentation strings are
also available for all the external symbols in the COMMON-LISP and CCL
packages if the MCL Help file is present in the folder containing the
MCL application.
352 Macintosh Common Lisp Reference

Methods Displays a list of methods that specialize on the class selected in the name
scrolling-list. This button is enabled only when a class is selected. A
dialog box contains the list of methods and a Find It button. Double-
clicking on a method in the list or pressing the Find It button opens a
Fred window containing the source code for the method.

The Get Info tool

The Get Info tool shows information about a symbol. The information
shown depends on the item chosen in the Show pop-up menu.

A symbol is entered in the Name text edit field. The Package pop-up
menu limits the search for the symbol to particular packages. The
Specializers type-in pop-up menu shows the classes on which the
symbol is defined and specifies parameter specializers for the symbol.
The Qualifier pop-up menu specifies an auxiliary method qualifier
using the option None, :before, :after, or :around.

The Show pop-up menu allows you to choose exactly what information
you want to see about the symbol, Definition(s), Applicable Methods,
Callers, Documentation, and Inspector. The items Definition(s),
Applicable Methods, and Callers display the relevant source code in a
Fred window if you double-click on an item in the list or press the Find
It button. The Documentation and Inspector items display a
documentation string and an Inspector window, respectively.

The following figure shows the Get Info dialog box.
Chapter 9: Debugging and Error Handling 353

■ Figure 9-8 The Get Info dialog box

The buttons on the bottom have the following functions:

Get Info Displays the information requested about the symbol.

Remove Def Removes the binding from the symbol in memory. The symbol's name in
the display is marked with an X to indicate that it is now unbound. The
definition of the symbol in the source file is not affected.

Find Def Displays the definition of the symbol from the source file.

The Get Info tool also finds user-defined symbols in Fred windows. If
Get Info cannot find the symbol, it asks if you want to search your Fred
windows for the symbol, as shown in the following figure.

■ Figure 9-9 The Get Info modal dialog box
354 Macintosh Common Lisp Reference

The Processes tool

The Processes tool displays information about all existing Macintosh
Common Lisp processes. After selecting this item, an Inspector window
appears on your screen. The Inspector window lists the name, state,
priority, idle status, and utilization of each process.

■ Figure 9-10 The Processes Inspector window

The % Utilization column shows cumulative values since process
run times were cleared. The Clear run times item in the Inspector's
Commands menu resets the values in the % Utilization column.
The Initial process includes time spent in other applications.

For more information on multiple processes in Macintosh Common
Lisp, see Chapter 12: Processes.

Miscellaneous Debugging Macros

The following macros are useful for testing and optimizing code and for
tracing program flow.

time [Macro]

Syntax time form

Description The time macro executes form, prints the duration of execution (with a
special note on garbage collection time, if any), and returns the value
returned by form. The time macro is useful for testing and optimizing
code.
Chapter 9: Debugging and Error Handling 355

Argument form Any Lisp form. The form should not be quoted.

Example
? (defun make-numlist (positive-number &aux result)
 "returns a list of numbers between 0 and
 positive-number - 1"
 (dotimes (x positive-number)
 (setq result (append result (list x))))
 ;APPEND is inefficient here.
 result)
MAKE-NUMLIST

? (time (make-numlist 100))
(MAKE-NUMLIST 100) took 449 ticks (7.483 seconds) to run.

Of that, 444 ticks (7.400 seconds) was spent in GC.

(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99)
? (defun make-faster-numlist (positive-number &aux result)
 "returns the same list more quickly"
 (dotimes (x positive-number)
 (setq result (cons x result)))

;This is more efficient.
 (nreverse result))
MAKE-FASTER-NUMLIST
? (time (make-faster-numlist 100))
(make-faster-numlist 100) took 0 ticks (0.000 seconds) to run.
(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99)

print-db [Macro]

Syntax print-db {form}*

Description The print-db macro is equivalent to progn, except that each form is
printed as it is evaluated. The form itself and the result of evaluating form
are both printed (unless form is a string, in which case it is printed only
once). The value of the last form is returned.

If multiple forms are given, they are printed on separate lines. Printed output
is sent to *error-output*, which makes the Listener the active window
before printing. Like progn, print-db returns the value of the last form.
356 Macintosh Common Lisp Reference

The print-db macro is useful for tracing program flow and for checking the
values of variables at various points in a program.

Argument form Any Lisp form.
Chapter 9: Debugging and Error Handling 357

358 Macintosh Common Lisp Reference

359

Chapter 10:

Events

Contents

Implementation of events in Macintosh Common Lisp / 360
How an event is handled / 360
MCL built-in event handlers / 361
Functions for redrawing windows / 369
Event information functions / 372
The event management system / 375
The cursor and the event system / 379
Event handlers for the Macintosh Clipboard / 383
MCL expressions relating to scrap handlers and scrap types / 384
The Read-Eval-Print Loop / 387

Eval-Enqueue / 388

This chapter explains how Macintosh Common Lisp processes events. It
describes built-in handlers and functions that give event-related information.
It discusses the MCL event management architecture. Finally, it describes two
processes involved in event management: updating the cursor and accessing
the Macintosh Clipboard.

You should read this chapter to understand or program events and event
handlers in Macintosh Common Lisp.

If you are creating handlers for Apple events, you should read this chapter and
then read Chapter 11: Apple Events.

Implementation of events in Macintosh Common Lisp

Users generate events as a way of directing program flow. Typical
events are keystrokes and mouse clicks. Events interrupt a program
and often require a response. Whenever possible, Macintosh programs
should be event driven.

Macintosh Common Lisp automatically handles events in a separate
process. When a user generates an event, the current program is
interrupted and an event handler handles the event. Program execution
does not resume until the event-handling function returns. Further
event processing is also deferred until the event-handling function
returns. For this reason, the computer may not respond to user actions
until the event handling is finished.

Many user programs do not need to handle events explicitly. For those
programs that do, several different event-handling methods are
available. In order of increasing complexity these are

■ defining methods associated with specific types of events in a view

■ defining all methods associated with a view

■ defining a hook procedure that has first priority in processing all
events

■ disabling all background event processing, and handling events with
an event loop

Most programming languages for the Macintosh computer support
only the last, and most difficult, method of event handling. MCL
programs rarely need to do anything more complex than the first
method.

Programs can be initiated from within an event handler; create a
separate process or use the function eval-enqueue, which lets an
event initiate a process with event processing enabled.

How an event is handled

The MCL event system gets each event from the Macintosh Operating
System in turn and binds *current-event* to it. The event system
then determines the type of the event and calls the appropriate event-
handling function on the relevant view. If the event is a mouse click, the
relevant view is the view in which the click occurred. If the event is a
keystroke, the relevant view is the active (frontmost) window.
360 Macintosh Common Lisp Reference

Functions that end with “–event–handler” should be called only by
the event system.

Many of the default event-handling methods do nothing, although they
are called whenever an event of the appropriate type is processed.
These handlers exist so that they may be shadowed by any subclass of
view that needs to process events of that type.

Some event handlers defined on views do nothing more than invoke
the same event handler on each subview. In this way nested views and
subviews are processed.

Event-handling functions assume that the *current–event* variable
is bound to a valid event record (see “Chapter 16: OS Entry Points and
Records”). They may also call the current-event information functions
(listed in “Event information functions” on page 372), which depend on
current-event being bound.

MCL built-in event handlers

The following are standard event handlers in Macintosh Common Lisp.

view-click-event-handler [Generic function]

Syntax view-click-event-handler (view simple-view) where
view-click-event-handler (view view) where
view-click-event-handler (window-or-item fred-mixin) where
view-click-event-handler (item dialog-item) where
view-click-event-handler (item table-dialog-item) where
view-click-event-handler (item scroll-bar-dialog-item) where
view-click-event-handler (menu pop-up-menu) where

Description The generic function view-click-event-handler is called by the
event system on the window containing the view whenever the user clicks
a view or subview.

The view-click-event-handler function is not called when the user
clicks the title bar, close box, zoom box, or size box of a window. The method
for simple-view does nothing. Specialized windows provided by the
system, such as Fred windows, have special behavior.

If you define any window methods, they must call call-next-method.
Chapter 10: Events 361

Arguments view A simple view, view, or subview, such as a window or
dialog item.

window-or-item
A Fred window or Fred dialog item.

item A dialog item, table dialog item, or scroll-bar dialog item.
menu A pop-up menu.
where The cursor position when the user clicks, expressed in

local window coordinates.

Example

The following code displays the cursor coordinates whenever the user
clicks my-window. (As a subclass of view, window inherits the view-
click-event-handler method for view.)
? (defclass my-window (window)())

#<STANDARD-CLASS MY-WINDOW>

? (defmethod view-click-event-handler
((window my-window) where)

 (print (point-string where)))

#<Method VIEW-CLICK-EVENT-HANDLER (MY-WINDOW T)>

? (make-instance 'my-window)

#<MY-WINDOW "Untitled" #x410891>

view-key-event-handler [Generic function]

Syntax view-key-event-handler (view simple-view) char
view-key-event-handler (window window) char
view-key-event-handler (item fred-dialog-item) char
view-key-event-handler (window-or-item fred-mixin)
 current-character

Description The methods of the generic function view-key-event-handler
examine the current keystroke and determine what is to be done with it.

The method for simple-view calls ed-beep. The method for window
determines whether the key indicates the selection of a default button or
indicates a change of the current key handler, then selects the button or passes
the keystroke to the appropriate key handler. The method for fred-mixin
binds the *current-keystroke* variable to the keystroke of the current
event and runs the Fred command associated with the keystroke. The method
for fred-dialog-item calls call-next-method inside with-focused-
view and with-fore-color.

Arguments view A simple view.
362 Macintosh Common Lisp Reference

window A window or Fred window.
item A Fred dialog item.
char The current keystroke character.
window-or-item

A Fred window or Fred dialog item.

view-activate-event-handler [Generic function]

Syntax view-activate-event-handler (view simple-view)
view-activate-event-handler (view view)
view-activate-event-handler (window window)
view-activate-event-handler (window-or-item fred-mixin)
view-activate-event-handler (item table-dialog-item)
view-activate-event-handler (item scroll-bar-dialog-item)

Description The generic function view-activate-event-handler is called by the
event system when the window containing the view is made active. The
method for view calls view-activate-event-handler on each
subview. The method for simple-view does nothing.

The method for window includes highlighting the window and drawing the
size box (if there is one).

Arguments view A simple view, view, or subview such as a dialog item.
window A window or Fred window.
item A Fred dialog item, table dialog item, or scroll-bar dialog

item.
window-or-item

A Fred window or Fred dialog item.

view-deactivate-event-handler [Generic function]

Syntax view-deactivate-event-handler (view simple-view)
view-deactivate-event-handler (view view)
view-deactivate-event-handler (window window)
view-deactivate-event-handler (window-or-item fred-mixin)
view-deactivate-event-handler (item table-dialog-item)
view-deactivate-event-handler (item scroll-bar-dialog-item)

Description The generic function view-deactivate-event-handler is called by
the event system to deactivate a view. It is called when the window
containing the view is active and a different window is made active.
Chapter 10: Events 363

The method for view simply calls view-deactivate-event-handler on
each subview. The method for window includes removing the highlight and
erasing the size box (if there is one).

Arguments view A simple view, view, or subview such as a window or
dialog item.

window A window or Fred window.
item A Fred dialog item, table dialog item, or scroll-bar dialog

item.

key-handler-mixin [Class name]

Description The class key-handler-mixin should be mixed into any class that
handles key events. The class fred-dialog-item includes key-
handler-mixin.

key-handler-list [Generic function]

Syntax key-handler-list (view simple-view)

Description The key-handler-list generic function returns the list of key handlers
associated with view.

Argument view A simple view or dialog item.

current-key-handler [Generic function]

Syntax current-key-handler (window window)

Description The current-key-handler generic function returns the current key
handler of window.

Argument window A window.

set-current-key-handler [Generic function]

Syntax set-current-key-handler (window window) item &optional
select-all
364 Macintosh Common Lisp Reference

Description The generic function set-current-key-handler sets the current key
handler of window to item. If item is not already the current key handler and
select-all is true, set-current-key-handler selects all of the window.

Arguments window A window.
item A key handler. If item is not a key handler, the function

signals an error.
select-all This variable determines whether the entire text of the

key handler is highlighted when it is first selected. The
default is t; that is, all the text is highlighted and can be
manipulated at once.

add-key-handler [Generic function]

Syntax add-key-handler (view simple-view) &optional window

Description The generic function add-key-handler adds a key handler to view. It is
called by install-view-in-window when the view installed is a
subclass of key-handler-mixin. If window has no current key handler,
view becomes the current key handler.

Arguments view A simple view or dialog item.
window A window to which to add the key handler. The default

value is (view-window view).

remove-key-handler [Generic function]

Syntax remove-key-handler (view simple-view) &optional window

Description The generic function remove-key-handler removes a key handler from
a window. It is called by the method of remove-view-from-window for
key-handler-mixin.

Arguments view A simple view or dialog item.
window A window from which to remove the key handler. The

default value is (view-window view).

change-key-handler [Generic function]

Syntax change-key-handler (view view)

Description The generic function change-key-handler changes the key handler of
view to the next key handler on key-handler-list of view.
Chapter 10: Events 365

Argument view A simple view or dialog item.

key-handler-p [Generic function]

Syntax key-handler-p (item dialog-item)
key-handler-p (key-handler key-handler-mixin)

Description The key-handler-p generic function checks to see whether item is a key
handler. When key-handler-p is called on an instance of a class one of
whose superclasses is key-handler-mixin, the function returns t
unless the key handler is disabled. The method for dialog-item returns
nil.

Arguments item A dialog item.
key-handler A key handler.

key-handler-idle [Generic function]

Syntax key-handler-idle (view simple-view) &optional dialog
key-handler-idle (item fred-dialog-item) &optional dialog

Description The key-handler-idle generic function is called periodically via the
default window-null-event-handler function to allow a key handler
to blink a cursor or perform other periodic activities.

The method for fred-dialog-item blinks the insertion point and matches
parentheses. The method for simple-view does nothing.

Arguments view A simple view.
item A Fred dialog item.
dialog An argument allowing a dialog to be specified. In system-

supplied methods, this argument is ignored.

window-null-event-handler [Generic function]

Syntax window-null-event-handler (window window)
window-null-event-handler (window t)

Description The generic function window-null-event-handler is called on the
top window (if there is one) whenever the system is idle. It updates the
cursor, runs system tasks, and forces output from *terminal-io*. If
there is no top window, the unspecialized method simply updates the
cursor..
366 Macintosh Common Lisp Reference

Argument window A window.

window-select-event-handler [Generic function]

Syntax window-select-event-handler (window window)

Description The generic function window-select-event-handler is called
whenever the user clicks an inactive window. The window-select-
event-handler function may be specialized, for example, to make a
window unselectable.

Argument window A window.

window-key-up-event-handler [Generic function]

Syntax window-key-up-event-handler (window window)

Description The generic function window-key-up-event-handler is called
whenever a key is released after being pressed. The method for window
does nothing.

Every key pressed by the user actually generates two events: one when the key
is pressed and another when the key is released.

The default Macintosh event mask filters out key-up events. To allow key-up
events, call #_SetEventMask with an appropriate mask. Note that you must
reset the event mask before exiting Lisp. For details on event masks, see
Macintosh Technical Note 202 and Inside Macintosh.

Argument window A window.

window-mouse-up-event-handler [Generic function]

Syntax window-mouse-up-event-handler (window window)

Description The window-mouse-up-event-handler generic function is called
whenever the user releases the mouse button. The method for window
does nothing.

Argument window A window.
Chapter 10: Events 367

window-grow-event-handler [Generic function]

Syntax window-grow-event-handler (window window) where

Description The generic function window-grow-event-handler is called by the
event system whenever the user clicks a window’s grow box. The method
for window calls #_GrowWindow, then calls set-view-size on the
window and the new size.

Arguments window A window.
where The position in screen coordinates of the cursor when the

mouse button was pressed down.

window-drag-event-handler [Generic function]

Syntax window-drag-event-handler (window window) where

Description The generic function window-drag-event-handler is called by the
event system whenever a window needs to be dragged. It calls
#_SetClip and #_ClipAbove on the region of the window, copies the
contents of the region to the new location of window, and calls set-view-
position on the window and the new position of the upper-left corner
of the window.

Arguments window A window.
where The position in screen coordinates of the cursor when the

mouse button was pressed down.

window-zoom-event-handler [Generic function]

Syntax window-zoom-event-handler (window window) message

Description The generic function window-zoom-event-handler is called by the
event system when the user clicks the window’s zoom box. It executes the
Toolbox calls to zoom the window, then calls window-size-parts.

The function window-size-parts should be specialized if you want to
change the contents of a window whenever the window changes size.

Arguments window A window.
message An integer, #$inZoomOut if the window should move to

the window’s zoom position and size and #$inZoomIn if
the window should move to the position and size it had
before zooming out.
368 Macintosh Common Lisp Reference

window-close-event-handler [Generic function]

Syntax window-close-event-handler (window window)

Description The generic function window-close-event-handler is called by the
event system whenever a window needs to be closed. In the method for
window, if the Meta key was pressed when the command was given, the
command closes all windows in the class of window. If the Control key was
pressed, window is hidden. Otherwise, window-close is called on
window.

Argument window A window.

window-do-first-click [Generic function]

Syntax window-do-first-click (window window)

Description The generic function window-do-first-click determines whether the
click that selects a window is also passed to view-click-event-
handler. The default value is nil, meaning that the click that selects a
window generates no further action.

You can give a window instance or subclass of window its own value for
window-do-first-click.

Argument window A window.

Functions for redrawing windows

Whenever a window is created or uncovered, an update event is posted
for the window. The next time events are processed, Macintosh
Common Lisp recognizes the update event and calls window-
update-event-handler.

The following functions relate to redrawing windows.

window-update-event-handler [Generic function]

Syntax window-update-event-handler (window window)
Chapter 10: Events 369

Description The generic function window-update-event-handler is called by the
event system whenever any portion of the window needs to be redrawn.
The window version calls #_BeginUpdate to make the VisRgn field of
the GrafPort the portion that needs to be redrawn, calls view-draw-
contents, and then calls #_EndUpdate to restore the GrafPort VisRgn
field.

Because event processing occurs asynchronously, window-update-event-
handler may not be called until a moment after a window is created or
uncovered. (In the default environment, this may take up to one-third of a
second; see event-ticks in “The event management system” on page 375.)
This means that anything drawn in the window immediately after it is created
or uncovered may be erased when window-update-event-handler is first
called.

To fix this problem, simply call event-dispatch before drawing in the
window. The function event-dispatch forces the processing of any
pending events. Note that it is necessary to call event-dispatch only when
drawing occurs soon after a window is created or uncovered.

You should not specialize this function except to note that the window has
been updated. To get special drawing behavior, you should instead specialize
view-draw-contents.

Argument window A window.

view-draw-contents [Generic function]

Syntax view-draw-contents (view simple-view)
view-draw-contents (view view)
view-draw-contents (window-or-item fred-mixin)
view-draw-contents (item fred-dialog-item)
view-draw-contents (item table-dialog-item)
view-draw-contents (item scroll-bar-dialog-item)
view-draw-contents (item static-text-dialog-item)
view-draw-contents (menu pop-up-menu)

Description The generic function view-draw-contents is called whenever a view
needs to redraw any portion of its contents. The view method for view-
draw-contents erases the area in the window’s erase region (for new
windows, this is the entire content area) and then calls view-draw-
contents on each subview. You can specialize this function so that a
user-defined view can be redrawn when portions of it are covered and
uncovered.

When view-draw-contents is called by the event system, the view’s clip
region is set so that drawing occurs only in the portions that need to be
updated. This normally includes areas that have been covered by other
windows and then uncovered.
370 Macintosh Common Lisp Reference

Arguments view A view or a simple view.
window A window.
item A dialog item.
window-or-item

A Fred window or Fred dialog item.
menu A pop-up menu.

Examples

The following code creates a window that always has a circle drawn in
it:
? (require 'quickdraw)

"QUICKDRAW"

? (setq foo (make-instance 'window))

#<WINDOW "Untitled" #x4A3BD9>

? (defmethod view-draw-contents ((window (eql foo)))

 (paint-oval window 10 10 100 100))

VIEW-DRAW-CONTENTS

(Note that the circle is drawn only after the first time the window is
covered
and uncovered.)

To add an area (rectangle or region) to the invalid region, call the trap
#_InvalRect or #_InvalRgn. Calling these traps forces the posting
of an update event for the window. For this reason, calling these traps
from inside view-draw-contents or window-update-event-
handler can lead to an infinite loop.

If you want to invalidate several areas before the update is performed,
surround the calls to #_InvalRect and #_InvalRgn with the special
form without-interrupts, which temporarily suspends updates.

The following call will force the redrawing of the entire window. It
doesn’t need without-interrupts because there is only one call to
#_InvalRect. If there were several calls to #_InvalRect, without-
interrupts would postpone updating until the end.
 (with-port wptr
 (#_invalrect :ptr (rref wptr window.portrect)))

The view-draw-contents function is not strictly an event handler,
since it may be called at any time, not only during event processing. For
example, you can use view-draw-contents to implement the
redrawing that occurs during scrolling, or you can use it to implement
a generalized printing mechanism. (For an example, see the file
scrolling-windows.lisp in your Examples folder.)
Chapter 10: Events 371

window-draw-grow-icon [Generic function]

Syntax window-draw-grow-icon (window window)

Description The generic function window-draw-grow-icon is called when the size
box in the lower-right corner of a window must be redrawn. You may
need to call this function explicitly if you draw over the size box.

When a window is inactive (that is, not the frontmost window), window-
draw-grow-icon erases the inside of the size box.

Argument window A window.

Event information functions

The following functions give event-related information. To bypass
these functions, programs can simply examine *current-event*
during event handling. (See “Chapter 16: OS Entry Points and
Records,” for techniques used in examining records.)

view-mouse-position [Generic function]

Syntax view-mouse-position (view simple-view)
view-mouse-position (view null)

Description The generic function view-mouse-position returns the cursor position
as a point expressed in the view’s local coordinates. The point is returned
as an integer (for a description of points, see “Chapter 2: Points and
Fonts”). This function may be called at any time, not just during event
processing. The coordinates may be negative, or outside of the view’s
PortRect, depending on the position of the cursor.

The function (view-mouse-position nil) returns the cursor position
expressed in screen coordinates.

Argument view A simple view.

Example

See the example under mouse-down-p.
372 Macintosh Common Lisp Reference

mouse-down-p [Function]

Syntax mouse-down-p

Description The mouse-down-p function returns t if the mouse button is pressed and
nil otherwise. This function may be called at any time, not only during
event processing.

Examples

The following example prints the mouse position in window
coordinates until the mouse is clicked.
(do () ((mouse-down-p))

 (print (point-string (view-mouse-position (front-
window)))))

The following example prints the mouse position in screen coordinates
until the mouse is clicked.
(do () ((mouse-down-p))

 (print (point-string (view-mouse-position nil))))

double-click-p [Function]

Syntax double-click-p

Description The double-click-p function returns t if the click currently being
processed was the second half of a double-click. Double-clicks take into
account the timing as well as the spacing of consecutive clicks.

The double-click-p function always returns nil if called from outside
event processing. It also returns false if the first click activated the window and
window-do-first-click is false.

multi-click-count [Variable]

Description The *multi-click-count* variable is incremented during event
processing if the current event is part of a series of multiple clicks. It is
reset to 1 when there is a mouse click that is not part of a series.

Determination of whether a click is part of a series is done as for double-
click-p.
Chapter 10: Events 373

double-click-spacing-p [Function]

Syntax double-click-spacing-p point1 point2

Description The function double-click-spacing-p is called by double-click-
p to see whether two clicks should count as a double-click. It is also used
to determine whether to increment *multi-click-count*.

Macintosh guidelines specify that if the cursor is moved excessively between
clicks, the clicks do not count as a double-click.

The function double-click-spacing-p returns false if point1 and point2
are separated by more than 4 pixels, horizontally or vertically. If they are
within 4 pixels of each other, both horizontally and vertically, the function
returns true.

Arguments point1 The cursor position during the first click.
point2 The cursor position during the second click.

command-key-p [Function]

control-key-p [Function]

option-key-p [Function]

shift-key-p [Function]

caps-lock-key-p [Function]

Syntax command-key-p
control-key-p
option-key-p
shift-key-p
caps-lock-key-p

Description Each of these functions has two meanings, depending on whether they are
called during event processing or outside it.

If called during event processing, they return true if the corresponding key
was pressed during the event; otherwise, they return false. If called outside of
event processing, they return true if the key is currently pressed; otherwise,
they return false.

Note that some Macintosh keyboards do not have a Control key.
374 Macintosh Common Lisp Reference

The event management system

This section describes the overall architecture used for implementing
event handling in Macintosh Common Lisp.

event-dispatch [Function]

Syntax event-dispatch &optional idle

Description The event-dispatch function is called periodically as a background
process. The event-dispatch function calls #_WaitNextEvent and
binds the value of *current-event* for the duration of the event
processing. It then calls *eventhook* if *eventhook* is not nil. If
eventhook returns true, the processing of the event stops. If
eventhook returns false, the event is passed to the system event
handlers. Finally, event-dispatch checks for deferred Apple events.

If you create a program with a loop that checks for events, you should
probably include a call to event-dispatch inside the loop. This improves
the response time when events occur.

Argument idle An argument representing whether the main Lisp process
is idle. The default is the value of *idle*, which is true
when the main Lisp process is idle and nil otherwise.
The function event-dispatch calls get-next-event
with an event and the value of idle.

get-next-event [Function]

Syntax get-next-event event &optional idle mask sleep-ticks

Description The get-next-event function calls #_WaitNextEvent to get an event.
It disables and reenables the clock sampled by get-internal-run-
time. (MultiFinder may do a context switch.)

After #_WaitNextEvent returns, the function reschedules the event-
dispatch task, which is the usual caller of get-next-event.

Arguments event An event record allocated on the stack or the heap.
idle Used to determine the default value of sleep-ticks. The

default value is *idle*, which is true if get-next-
event is called via event-dispatch from the top-level
loop when the Listener is waiting for input.
Chapter 10: Events 375

mask This is the EventMask argument for
#_WaitNextEvent, a fixnum. The default is
#$everyEvent.

sleep-ticks This is the Sleep argument to #_WaitNextEvent. It
determines how many ticks are given to other
applications under MultiFinder if no event is pending.
The default is determined by the values of the idle
argument and the global variables *idle-sleep-
ticks*, *foreground-sleep-ticks*, and
background-sleep-ticks. If Macintosh Common
Lisp is running in the foreground, then the default is
idle-sleep-ticks if the value of idle is true;
otherwise, the default is *foreground-sleep-
ticks*. If Macintosh Common Lisp is running in the
background, then the default is *background-sleep-
ticks* unless that value is nil, in which case the default
is the same as when Macintosh Common Lisp is running
in the foreground.

current-event [Variable]

Description The *current-event* variable holds the event record currently being
processed. This is bound by event-dispatch and is valid only during
event processing. The fields of *current-event* may be accessed using
rref (for details see “Chapter 16: OS Entry Points and Records,” and
Inside Macintosh).

The definition of the event record type is

(defrecord Event
 (what integer)
 (message longint)
 (when longint)
 (where point)
 (modifiers integer))

eventhook [Variable]

Description The *eventhook* variable provides a user hook into the event system. A
program can store a function of no arguments in this global variable. The
stored function is given the first opportunity to handle all event
processing. If the function returns true, the event system assumes the
event has been handled and no further processing is done. If the function
returns false, the event system assumes the event hasn’t been handled and
the normal event handlers are invoked.
376 Macintosh Common Lisp Reference

If *eventhook* is a list of functions with no arguments, they will be called
sequentially until either one of them returns true or the list is exhausted. In the
latter case, normal event processing occurs.

An *eventhook* function can be used to perform periodic tasks (because it
is called whenever there is an event, including a null event).

Note that a slow *eventhook* function can significantly slow down
Macintosh Common Lisp.

idle [Variable]

Description The *idle* variable signals the event system that the main Lisp process
is idle. This changes the sleep time that event dispatch gives to the trap
#_WaitNextEvent. This variable is normally bound to true by the read
loop as the loop waits for input, and by modal-dialog.

idle-sleep-ticks [Variable]

Description The *idle-sleep-ticks* variable holds the value of the sleep time
given to #_WaitNextEvent when Macintosh Common Lisp is idle. The
initial value is 5.

foreground-sleep-ticks [Variable]

Description The *foreground-sleep-ticks* variable holds the value of the sleep
time given to #_WaitNextEvent when Macintosh Common Lisp is
running. The initial value is 0.

background-sleep-ticks [Variable]

Description The *background-sleep-ticks* variable holds the value of the sleep
time given to #_WaitNextEvent when Macintosh Common Lisp is in the
background. The initial value is 5. .

event-ticks [Function]

Syntax event-ticks
Chapter 10: Events 377

Description The event-ticks function returns the number of ticks (sixtieths of a
second) between calls to event-dispatch. This number is applicable
when code is running. When Lisp is idling in the main read-eval-print
loop, event-dispatch is called as close to continuously as possible.

This value is reset on every suspend and resume event, according to the values
in *foreground-event-ticks* and *background-event-ticks*.

set-event-ticks [Function]

Syntax set-event-ticks n

Description The set-event-ticks function sets the number of ticks between calls to
event-dispatch to n.

If n is too low, event-dispatch is called too often, and the system may get
bogged down by event processing. If it is too high, the system may not respond
smoothly to events. To keep the insertion bar blinking smoothly, for example,
a sleep time of 12 to 20 ticks is recommended. This will yield 3 to 5 idle events
per second.

This function is called on every suspend and resume event, with the argument
foreground-event-ticks or *background-event-ticks*.

Argument n An integer determining the number of ticks.

foreground-event-ticks [Variable]

Description The *foreground-event-ticks* variable holds the appropriate value
for event-ticks when Lisp is the foreground application. The initial
value is 20.

background-event-ticks [Variable]

Description The *background-event-ticks* variable holds the appropriate value
for event-ticks when Lisp is a background application. The initial
value is 5.

window-event [Generic function]

Syntax window-event (window window)
378 Macintosh Common Lisp Reference

Description The window-event generic function is called by event-dispatch to
get a window to handle an event. This function is called only when the
event system determines the appropriate window. The method of
window-event for window checks the type of the event and calls the
appropriate event handler. The window-event function should be
specialized in windows that need to do something in addition to or
different from the default behavior for many types of events.

Argument window A window.

without-interrupts [Special form]

Syntax without-interrupts {form}*

Description The without-interrupts special form executes form with all event
processing disabled, including abort.

You should use without-interrupts sparingly because anything executed
dynamically within it cannot be aborted or easily debugged.

However, you must often use without-interrupts in code that causes a
window to be redisplayed. If you need to invalidate a number of regions in a
window, do it inside a without-interrupts form to prevent multiple
redisplays.

Argument form Zero or more Lisp forms.

break-loop-when-uninterruptable [Variable]

Description Controls the interaction of break loops and without-interrupts. If set
to true, a break loop can occur during a without-interrupts. The
without-interrupts is suspended for the duration of the break
loop. The default value is t.

The cursor and the event system

The cursor is the screen image whose motion is controlled by the mouse.
As the user moves the mouse on the desktop, the cursor moves
correspondingly on the screen.
Chapter 10: Events 379

The cursor often changes shape as it moves over different areas of the
screen. For example, when it is on the menu bar or scroll bars, it is
shaped like an arrow; when inside a text window, the cursor is shaped
like an I-beam.

A program can control the appearance of the cursor in four ways:

■ You can define methods for view-mouse-enter-event-handler
and view-mouse-leave-event-handler, specialized on a
subclass of simple-view. These functions are called when the mouse
cursor enters and leaves the area of the view. A possible side effect may
be to change the shape of the cursor, for example, from an arrow to an
I-beam.

■ A view may have a method for the view-cursor generic function. The
event system sets the cursor according to this method whenever the cursor
is over the view.

■ The with-cursor macro may surround a series of forms. The cursor
assumes a given shape for the duration of the macro.

■ The variable *cursorhook* may be bound to a function or cursor,
giving you complete control over the appearance of the cursor.

view-cursor [Generic function]

Syntax view-cursor (view simple-view) point
view-cursor (view view) point
view-cursor (window window) point
view-cursor (item basic-editable-text-dialog-item) point
view-cursor (window fred-window) point

Description The view-cursor generic function determines the cursor shape
whenever the window containing the view is active and the cursor is over
it. The view-cursor function is called by window-update-cursor.

Arguments view A view or simple view.
window A window or Fred window.
item A dialog item.
point The position of the cursor, expressed as a point.

window-update-cursor [Generic function]

Syntax window-update-cursor (window null) point
window-update-cursor (window window) point

Description The generic function window-update-cursor is called by update-
cursor whenever the cursor is over the window.
380 Macintosh Common Lisp Reference

When the mouse is over the front window or any floating window, the
window-update-cursor method for the window class sets the variable
mouse-view to the view containing the mouse, using find-clicked-
subview. The window-null-event-handler method for the window class
calls update-cursor, which calls *cursorhook*. The function that is the
initial value of *cursorhook* calls window-update-cursor, which sets
the cursor using the value returned by view-cursor.

The method for window simply sets the cursor to the result of calling the
generic function view-cursor on the clicked subview of window if there is
one; otherwise it sets the cursor to the result of calling window-cursor on the
window.

The null method sets the cursor to the value of *arrow-cursor*.

The window-update-cursor function should be shadowed if the cursor
must change according to what part of the window it is over.

Arguments window A window or Fred window.
point The position of the cursor, given in the window’s local

coordinates.

view-mouse-enter-event-handler [Generic function]

view-mouse-leave-event-handler [Generic function]

Syntax view-mouse-enter-event-handler (view simple-view)
view-mouse-leave-event-handler (view simple-view)

Description The methods of these generic functions for simple-view do nothing.
You specialize them to create mouse-sensitive items.

Argument view A simple view.

with-cursor [Macro]

Syntax with-cursor cursor {form}*

Description The with-cursor macro executes zero or more forms with
cursorhook bound to cursor.

Arguments cursor A cursor record or a 'CURS' resource ID (see Inside
Macintosh for details on 'CURS' resource IDs).

form Zero or more forms to be executed within the body of the
macro.
Chapter 10: Events 381

cursorhook [Variable]

Description The *cursorhook* variable may be bound to a function or cursor, giving
you complete control over the appearance of the cursor. This variable is
bound by with-cursor.

If the value of this variable is non-nil, then no other cursor functions are
called. If the value of *cursorhook* is a function, it is called repeatedly in the
background and has complete control over the state of the cursor at all times.
If it is not a function, it should be a cursor record or a 'CURS' resource ID.

Its initial value is an internal function that allows events to alter the cursor
normally.

update-cursor [Function]

Syntax update-cursor &optional hook

Description The update-cursor function does the actual work of cursor handling. If
hook is a function or symbol, it is called with no arguments; otherwise,
set-cursor is called with hook.

The update-cursor function is called periodically by the global event-
handling system. It is not usually necessary to call this function directly, but it
may be called to make sure that the cursor is correct at a particular time.

Argument hook A function, symbol, or cursor. The default value is
cursorhook.

set-cursor [Function]

Syntax set-cursor cursor

Description The set-cursor function sets the cursor to cursor.

Argument cursor A cursor record or a 'CURS' resource ID.

◆ Note: If set-cursor is called from anywhere except within a window-
update-cursor function, a function that is the value of
cursorhook, or a without-interrupts special form, the event
system’s background cursor handling immediately resets the cursor to
some other shape. If cursor is not of an acceptable type, then no action
is taken. To prevent the system from hanging at cursor update time, no
error is signaled.
382 Macintosh Common Lisp Reference

arrow-cursor [Variable]

Description The *arrow-cursor* variable specifies the standard north-northwest-
arrow cursor shape.

watch-cursor [Variable]

Description The *watch-cursor* variable specifies the watch-face shape shown
during time-consuming operations, when event processing is disabled.

i-beam-cursor [Variable]

Description The *i-beam-cursor* variable specifies the I-beam shape used when
the cursor is over an area of editable text.

Event handlers for the Macintosh Clipboard

Data that can be cut and pasted comes in different forms, for example,
ASCII text, PICT format graphics, and stylized text. Macintosh
Common Lisp provides a simple model for accessing the Macintosh
scrap, the structure that supports the Macintosh Clipboard. The
Clipboard is accessed through a simple handler, the scrap handler.

Macintosh Common Lisp uses scrap handlers, with one handler for
each type of scrap data. The scrap handlers are stored in an association
list of the form (scrap-type-keyword . scrap-handler).

The scrap-type keyword should have a four-character print name. This
name is used as an OStype data type when the scrap type is
communicated to the Macintosh Operating System. (For full details on
OStype data types, see Inside Macintosh.)

In the initial MCL environment, scrap handlers are defined for simple
text, formatted Fred text, and Lisp code. You can add handlers for other
data types.

When defining new handlers, you should look at the file pict-
scrap.lisp in the MCL Examples folder to learn how to define a
scrap handler for PICTs.
Chapter 10: Events 383

For full details on the operation of the Clipboard, you should also
consult Inside Macintosh.

MCL expressions relating to scrap handlers and scrap types

The following MCL expressions relate to defining scrap handlers and
scrap types.

get-scrap [Function]

Syntax get-scrap scrap-type

Description The get-scrap function returns two values. The first value is the current
scrap of scrap-type. The second value is t if some scrap is found or nil if
no scrap is found.

The get-scrap function looks up the scrap handler for scrap-type and calls
get-internal-scrap with the handler.

Before calling get-internal-scrap, get-scrap checks to see whether
data needs to be imported from the external Macintosh system scrap.

Argument scrap-type A scrap type. In the initial MCL environment, the three
predefined scrap types are :text, :fred, and :lisp.
The file pict-scrap.lisp in your Examples folder
adds the :pict type.

Example

Here is an example of using get-scrap to get some text from the
Clipboard. (The string "Here is some text from the
Clipboard" is already in the Clipboard.)
? (get-scrap :text)

"Here is some text from the Clipboard"

T

put-scrap [Function]

Syntax put-scrap scrap-type scrap-value &optional overwrite-p
384 Macintosh Common Lisp Reference

Description The put-scrap function stores scrap-value in the scrap, as type scrap-type.
If the value of overwrite-p is true (the default), then all other entries (of any
type) in the scrap are cleared; if the value of overwrite-p is false, scrap
entries of other types are not cleared.

The put-scrap function works by looking up the scrap handler for scrap-type
and calling set-internal-scrap with the handler and scrap value.

The put-scrap function pushes scrap-type onto the *scrap-state* list and
sets the variable @ to scrap-value.

Arguments scrap-type A scrap type. In the initial MCL environment, the three
predefined scrap types are :text, :fred, and :lisp.
The file pict-scrap.lisp in your Examples folder
adds the :pict type.

scrap-value The value of the new scrap: that is, what is stored in the
scrap. This should be in a format compatible with scrap-
type.

overwrite-p A Boolean variable indicating whether scrap values of
other types should be cleared. The default value is true,
which clears all other types from the scrap.

Example

The following code puts the phrase “This is only a text” onto the scrap
and retrieves it:
? (put-scrap :text "This is only a text")

"This is only a text"

? (get-scrap :text)

"This is only a text"

T

scrap-state [Variable]

Description The *scrap-state* variable contains a list of scrap types and indicates
which types currently have a valid scrap. This variable is modified by calls
to put-scrap.

scrap-handler-alist [Variable]

Description The *scrap-handler-alist* variable contains an association list of
scrap-type keywords and scrap-handler objects. Initially, this association
list has three entries (one for :text, one for :fred, and one for :lisp).
If you define new scrap handlers, you should add entries for them to this
list.
Chapter 10: Events 385

Example

This scrap-handler association list contains entries for four scrap
handlers. The :pict scrap handler is defined in pict-scrap.lisp in
the MCL Examples folder.
? *scrap-handler-alist*

((:PICT . #<PICT-SCRAP-HANDLER #x4BB4F9>) (:LISP . #<LISP-
SCRAP-HANDLER #x302CC9>) (:FRED . #<FRED-SCRAP-HANDLER
#x3029E1>) (:TEXT . #<TEXT-SCRAP-HANDLER #x3025E9>))

scrap-handler [Class name]

Description The class scrap-handler is the class of scrap handlers. Methods are
provided for the scrap-handler functions get-internal-scrap, set-
internal-scrap, internalize-scrap, and externalize-scrap.

get-internal-scrap [Generic function]

Syntax get-internal-scrap (handler scrap-handler)

Description The get-internal-scrap generic function returns the value of the
scrap of a given type. This function is called by get-scrap.

Argument handler A scrap handler.

set-internal-scrap [Generic function]

Syntax set-internal-scrap (handler scrap-handler) value

Description The set-internal-scrap generic function sets the value of the scrap of
a given type. This function is called by put-scrap.

Arguments handler A scrap handler.
value The new value.

internalize-scrap [Generic function]

Syntax internalize-scrap (handler scrap-handler)
internalize-scrap (handler text-scrap-handler)
386 Macintosh Common Lisp Reference

Description The internalize-scrap generic function converts the scrap from
external to internal format. This function is called when the user switches
into Macintosh Common Lisp from another application or from a desk
accessory. The function retrieves data from the Macintosh system heap
using the appropriate system calls and then calls set-internal-scrap
on the result.

The operation of the Macintosh system heap and the appropriate system calls
are described in Inside Macintosh.

Argument handler A scrap handler.

externalize-scrap [Generic function]

Syntax externalize-scrap (handler scrap-handler)
externalize-scrap (handler text-scrap-handler)

Description The externalize-scrap generic function converts the scrap from
internal to external format. This function is called when the user switches
from Macintosh Common Lisp to another application or to a desk
accessory. The function copies data to the Macintosh system heap using
the appropriate system calls.

The default method for scrap-handler does nothing.

The operation of the Macintosh system heap and the appropriate system calls
are described in Inside Macintosh.

Argument handler A scrap handler.

The Read-Eval-Print Loop

Associated with each Listener is a read-eval-print loop run by the
toplevel-loop function. This function takes input from the Listener
(and other buffers), evaluates it, prints out the result, and then gets
another input.

toplevel-loop [Function]

Syntax toplevel-loop

Description The toplevel-loop function implements the read loop.
Chapter 10: Events 387

Eval-Enqueue

An event (such as choosing a command or clicking a dialog box) that
begins a long process should not simply execute the process. If it does,
the process runs with interrupts disabled and future events are ignored
until the process returns. This is fine for quick actions but can be a
problem for time-consuming actions.

The solution to this problem is for event actions to spawn separate
processes or queue up forms. In the latter case, the forms are received
and processed in order by the topmost listener. This keeps interrupts
enabled.

There are many ways to queue up forms. The simplest is to push them
onto a list and have the topmost listener’s read-eval-print loop pop
things from the list. This can be done automatically with the function
eval-enqueue which is designed to work with the built-in read-eval-
print loop function, toplevel-loop.

eval-enqueue [Function]

Syntax eval-enqueue form

Description The eval-enqueue function queues up form for evaluation in
the read-eval-print loop. The eval-enqueue function returns
immediately. This means that form is not executed at the
event-handling level but instead is executed as if it had been entered into
the Listener. (It is executed only when other forms entered into the
Listener or queued up have returned.)

This function is useful for initiating programs from within event handlers. The
form is executed as part of the normal read-eval-print loop rather than as part
of an event handler. This means that other events can be processed during the
execution of form.

Note that eval-enqueue is a function, and so its argument is evaluated. The
result of this evaluation is put into the read-eval-print loop.

Argument form An MCL form.

Examples

Here is an example of how to use eval-enqueue to evaluate a form
with event processing enabled. The first menu item does not disable
event handling; the second menu item does. (Note that both can be
aborted by typing Command-period.)
? (setq my-menu (make-instance 'menu :menu-title "Events"))

#<MENU "Events">
388 Macintosh Common Lisp Reference

? (menu-install my-menu)

T

? (setq can-process-this-item

 (make-instance 'menu-item

 :menu-item-title "Process events"

 :menu-item-action

 #'(lambda (item)

 (declare (ignore item))

 (eval-enqueue

 '(dotimes (x 100)

 (print "Choose menus")))))
#<MENU-ITEM "Process events">

? (setq cant-process-this-item

 (make-instance 'menu-item

 :menu-item-title

 "Don't process events"

 :menu-item-action

 #'(lambda (item)

 (declare (ignore item))

 (dotimes (x 100)

 (print "Choose if you can"))))))

#<MENU-ITEM "Don't process events">

? (add-menu-items my-menu

 can-process-this-item

 cant-process-this-item)

The user can also use eval-enqueue in dialog boxes. The action is
initiated by the dialog box, but the user can still access other parts of the
system (including other dialog buttons) while the action is running.

In the following example, the action of the Go button is queued so that
other events can be processed while it is running. This allows the user
to click the Stop button.

Note that the action of the Stop button does not call eval-enqueue. If
it did, the queued form would never be run (because the form queued
by the Go button would never return). The Stop button communicates
with the action of the Go button by changing the value of a lexical
variable.
? (let ((stop nil))

 (flet ((start ()

 (setq stop nil)

 (loop

 (if stop (return))

 (print "Click stop when bored"))))

 (make-instance 'window
Chapter 10: Events 389

 :window-title "Stop and Go"

 :view-subviews

 (list

 (make-instance 'button-dialog-item

 :dialog-item-text "Go"

 :dialog-item-action

 #'(lambda (item)

 (declare (ignore item))

 (eval-enqueue `(funcall ,#'start))))
 (make-instance 'button-dialog-item

 :dialog-item-text "Stop"

 :dialog-item-action

 #'(lambda (item)

 (declare (ignore item))

 (setq stop t)))))))

get-next-queued-form [Function]

Syntax get-next-queued-form

Description The get-next-queued-form function returns the next form from the
pending queue or returns nil if there are no forms pending. A second
value returned is t if there was a pending form and nil if there was no
pending form.

During programming sessions, queued-up forms include text entered in the
Listener and evaluated from buffers as well as forms passed to eval-
enqueue.
390 Macintosh Common Lisp Reference

391

Chapter

11

:

Apple Events

Contents

Implementation of Apple events / 392
Applications and Apple Events / 392
Application class and built-in methods / 394
New application methods / 397
Standard Apple event handlers / 400
Defining new Apple events / 404

Installing Apple event handlers / 406
Installing handlers for queued Apple event replies / 407

Sending Apple events / 409

This chapter describes how Macintosh Common Lisp supports Apple events
and the Apple Event Manager.

You should read this chapter if you want to understand how Macintosh
Common Lisp supports required Apple events and how you can support
Apple events in your application. It also describes how to communicate
between Macintosh Common Lisp and another process, such as ToolServer or
HyperCard.

Before reading this chapter, you should be familiar with the Macintosh Event
Manager and with MCL event handling. You should also read about the Apple
Event Manager in

Inside Macintosh

. When communicating with another
program, you should read the other program’s Apple events documentation as
well; for example, if you are communicating between Macintosh Common
Lisp and HyperCard, you should look at the “AppleEvent Primer” stack in the
folder “Your Tour of HyperCard,” distributed with version 2.1 of HyperCard.

Implementation of Apple events

The Finder uses Apple events to open applications and quit them, to
open documents, and to print documents. In addition, Apple events
and the Apple Event Manager may provide services to other
applications and request services from them. The Apple Event Manager
is available only under System 7. To determine whether the Apple
Event Manager is available, call the Gestalt function described in the
compatibility guidelines information in Inside Macintosh.

Macintosh Common Lisp provides built-in support for receiving Apple
events and replying to them. It supports the four required Apple
events: Open Application, Open Documents, Print Documents, and
Quit Application. It also provides facilities for defining other Apple
event handlers.

Creating Apple events and sending them to other applications are not
directly supported in Macintosh Common Lisp. However, in your
Examples folder are three files illustrating how to send Apple events in
Macintosh Common Lisp. These files are

■ appleevent-toolkit.lisp, containing useful functions for
sending Apple events to other processes, including to HyperCard

■ eval-server.lisp, which shows how to handle standard
doscript and eval Apple events

■ toolserver.lisp, an example of an Apple events interface to
ToolServer

Applications and Apple Events

Macintosh Common Lisp defines a class, application, on which
Apple event handlers are specialized. Macintosh Common Lisp defines
Apple event handlers as generic functions, specialized on the
application class. In addition, MCL provides a number of other
application-based generic functions which are not directly related to
Apple events.
392 Macintosh Common Lisp Reference

Apple event handlers work exactly like other MCL event handlers. For
example, the MCL event handler window-null-event-handler is
specialized on window. To customize this behavior, you can create your
own subclasses of window and write methods on window-null-
event-handler for those classes. In just the same way, for Apple
event handlers, you can create your own subclass of application and
add your own specialized methods on the basic handlers. You can also
write handlers for new Apple events.

In Macintosh Common Lisp, only one instance of the class
application is used at a time. The instance represents the current
application object, bound to the variable *application*. Apple
event handler methods are called on the value of *application*.

Because Macintosh Common Lisp bypasses the Apple Event Manager’s
dispatch routine and does its own dispatching, you do not need to
concern yourself with how your function is called by the Apple Event
Manager. Lisp takes care of both dispatching and run-time error
checking. If no error occurs, the handler should simply return in the
normal way. The value returned by the handler is ignored.

If an error occurs, the handler should signal an appleevent-error
condition, with an error number and an optional error string.

An Apple event handler method has four arguments:

application The application, always the value of *application*.

appleevent The Apple event, which is an MCL object of type macptr and a record of
type AEDesc—a record with only two fields, a type and a
handle. MCL users generally do not have to look at the
record structure directly.

reply Another Apple event record, provided by the
Apple Event Manager. If a reply is required, information should be
copied into this record using Apple Event Manager calls.

refcon The handler reference constant, which is any
Lisp object. When the handler is installed, you have the option of
specifying some Lisp object that serves to distinguish (for instance) two
different installations of the same handler. The reference constant is
often ignored.

For an extended example of how to write Apple event handlers, see the
file eval-server.lisp in the MCL Examples folder.
Chapter 11: Apple Events 393

Application class and built-in methods

This section describes the application class, its built-in subclasses, and
the methods and generic functions defined on them.

application [Class name]

Description The application class is the class on which Apple event handlers are
specialized.

lisp-development-system [Class name]

Description The lisp-development-system class is a subclass of the
application class. When MCL starts up, the value of *application*
is an instance of lisp-development-system.

application [Variable]

Description The *application* variable is bound to an instance of a subclass of
application. Its initial value is an instance of the lisp-
development-system class.

application-error [Generic function]

Syntax application-error (application application) condition error-
pointer
application-error (application lisp-development-
system)condition error-pointer

Description The generic function application-error is called whenever a
condition is signaled that has no handler. The method for application
quits the application. The method for lisp-development-system
enters a break-loop.
394 Macintosh Common Lisp Reference

You can customize your error handling by defining a subclass of
application and setting *application* to an instance of your class. User
application-error methods should have a non-local exit, because if
application-error returns, MCL calls it again with a condition so that it
may not return. However, if it returns from that call, MCL throws to the
toplevel.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

condition The error condition.

error-pointer An integer representing the address of the stack frame of
the function that signaled the error. The method
specialized on lisp-development-system uses this address
to determine the name of the function and uses this
address as an input to the stack backtrace facility.

Example
? (defclass my-application (application)())

#<STANDARD-CLASS MY-APPLICATION>

? (defmethod application-error ((application my-application)

 condition error-pointer)

 (declare (ignore error-pointer))

 (message-dialog (format nil "error: ~a" condition))

 (toplevel))

#<STANDARD-METHOD APPLICATION-ERROR (MY-APPLICATION T T)>

? (setf *application* (make-instance 'my-application))

#<MY-APPLICATION #xB09279>

application-overwrite-dialog [Generic function]

Syntax application-overwrite-dialog (application application)
filename prompt

Description The generic function application-overwrite-dialog displays a
dialog when there is an attempt to overwrite an existing file. The dialog
asks whether to replace the file or choose a new filename.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

filename A pathname or string that specifies an existing file.

prompt The prompt message.
Chapter 11: Apple Events 395

find-edit-menu [Generic function]

Syntax find-edit-menu (application application)

Description The generic function find-edit-menu returns the first menu in the
menu bar containing the command -X.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

toplevel-function [Generic function]

Syntax toplevel-function (application application) init-file
toplevel-function (application lisp-development-system) init-
file

Description The generic function toplevel-function is called when an application
created by save-application starts. The method for application
calls open-application-document or print-application-
document on each document specified in the Finder for opening or
printing. The method for lisp-development-system loads files of type
fasl that were selected in the Finder, loads init-file, calls load-
preferences-file, and opens Fred windows for any text files that
were selected in the Finder, and creates a Listener window.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

init-file A pathname or string that is the init-file argument to the
save-application function.

view-key-event-handler [Generic function]

Syntax view-key-event-handler (application application) char

Description The generic function view-key-event-handler is called with
application as the first argument when there are no active windows and
the user presses a key on the keyboard. The method for application sounds
a beeps.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

 char The current keystroke character.
396 Macintosh Common Lisp Reference

New application methods

The following methods may be defined for your application
subclass to return the values noted. Some of the values they return are
used as the default values in the Save Application dialog fields when a
particular application class is selected.

application-name [Generic function]

Syntax application-name (application application)

Description Return the name of the application (a string). The default value is nil.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

application-file-creator [Generic function]

Syntax application-file-creator (application application)

Description Returns a four-character string or symbol for Finder file creator type. The
default value is :|????| (the value of the constant default-app-
creator).

Arguments application The application. MCL standard event handling always
uses the value of *application*.

application-about-view [Generic function]

Syntax application-about-view (application application)

Description A view instance containing dialog items to display in the About dialog;
the mandatory MCL redistribution notice is placed below this view to
make the About dialog. The default value is a static text item with the
application's name.

Arguments application The application. MCL standard event handling always
uses the value of *application*.
Chapter 11: Apple Events 397

application-about-dialog [Generic function]

Syntax application-about-dialog (application application)

Description (Optional) A dialog instance to be used as the About dialog.

Note: the dialog may need to contain an MCL redistribution notice to
satisfy licensing agreements; it is recommended to define a view instead
(see above). The default value is a dialog constructed using the value of
application-about-view.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

application-sizes [Generic function]

Syntax application-sizes (application application)

Description Returns two values, the minimum Finder memory partition size, and the
preferred Finder memory partition size, each in kilobytes. If a value is
specified as nil, the number from the associated Save Application dialog
item will be used; these are initially taken from 'size' resource of the MCL
application itself.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

application-resource-file [Generic function]

Syntax application-resource-file (application application)

Description Either nil or the name of a file whose resources will be copied in to the
new application, adding to or replacing those copied from the MCL
application itself (all resources are copied from MCL, except the 'CCL2'
resource). See the Inside Macintosh documentation on Finder Resources to
define the proper resources for your application. The default value is nil.

Arguments application The application. MCL standard event handling always
uses the value of *application*.
398 Macintosh Common Lisp Reference

application-suspend-event-handler [Generic function]

Syntax application-suspend-event-handler (application
application)

Description This function is called with the value of *application* when MCL is
suspended. The application method converts the scrap, deactivates
windows, and hides windoids if *hide-windoids-on-suspend* is
true.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

application-resume-event-handler [Generic function]

Syntax application-resume-event-handler (application application)

Description This function is called with the value of *application* when MCL is
resumed. The application method converts the scrap, reactivates the
front window, and shows hidden windoids if *hide-windoids-on-
suspend* is true.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

application-eval-enqueue [Generic function]

Syntax application-eval-enqueue (application application) form
application-eval-enqueue (application lisp-development-
system) form

Description This function is called with the value of *application* by the eval-
enqueue function. The application method calls funcall (for a
function or symbol) or eval (for a list) on form. The lisp-
development-system method adds form to the eval queue of the
frontmost active listener if one exists, otherwise invokes call-next-
method.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

 form A symbol, function or lisp form.

Example:
Chapter 11: Apple Events 399

(defclass my-application (application)())

(defmethod application-name ((app my-application))

 "AwesomeApp")

(defmethod application-file-creator ((app my-application))

 :|MyAp|)

(defmethod application-resource-file ((app my-application))

 "ccl:myapp;app-resources.rsrc")

(defmethod application-about-view ((app my-application))

 (make-dialog-item 'static-text-dialog-item

 #@(10 10)

 #@(300 30)

 "AwesomeApp™

The most awesome application ever!"))

(defmethod application-sizes ((app my-application))

 (values 5000 7000))

Standard Apple event handlers

This section describes the generic functions defined to handle the four
basic Apple events, their predefined methods, and auxiliary functions
called by them.

open-application-handler [Generic function]

Syntax open-application-handler(application application) appleevent
reply refcon

Description The generic function open-application-handler handles the Open
Application Apple event. The default method does nothing.

Arguments application The application, always the value of *application*.
400 Macintosh Common Lisp Reference

appleevent The Apple event, which is an MCL object of type macptr
and a record of type AEDesc—a record with only two
fields, a type and a handle. MCL users generally do not
have to look at the record structure directly.

reply Another Apple event record, provided by the Apple
Event Manager. If a reply is required, information should
be copied into this record using Apple Event Manager
calls.

refcon The handler reference constant, which is any Lisp object.
When the handler is installed, you have the option of
specifying some Lisp object that serves to distinguish (for
instance) two different installations of the same handler.
The reference constant is often ignored.

quit-application-handler [Generic function]

Syntax quit-application-handler(application application)appleevent
reply refcon

Description The generic function quit-application-handler handles the Quit
Application Apple event. The default method quits Macintosh Common
Lisp.

Arguments application The application, always the value of *application*.
appleevent The Apple event, which is an MCL object of type macptr

and a record of type AEDesc—a record with only two
fields, a type and a handle. MCL users generally do not
have to look at the record structure directly.

reply Another Apple event record, provided by the Apple
Event Manager. If a reply is required, information should
be copied into this record using Apple Event Manager
calls.

refcon The handler reference constant, which is any Lisp object.
When the handler is installed, you have the option of
specifying some Lisp object that serves to distinguish (for
instance) two different installations of the same handler.
The reference constant is often ignored.

open-documents-handler [Generic function]

Syntax open-documents-handler (application application) appleevent
reply refcon
Chapter 11: Apple Events 401

Description The generic function open-documents-handler handles the Open
Documents Apple event. The method for application calls open-
application-document on application for each document.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

appleevent The Apple event, which is a macptr of type AEDesc—a
record with only two fields, a type and a handle. MCL
users generally do not have to look at the record structure
directly.

reply Another Apple event record, provided by the Apple
Event Manager. If a reply is required, information should
be copied into this record using Apple Event Manager
calls.

refcon The handler reference constant, which is any Lisp object.
When the handler is installed, you have the option of
specifying some Lisp object that serves to distinguish (for
instance) two different installations of the same handler.
The reference constant is often ignored.

open-application-document [Generic function]

Syntax open-application-document (application lisp-development-
system) filename startup
open-application-document (application application)
filename startup

Description The generic function open-application-document is called by the
open-documents-handler method. The method for lisp-
development-system loads files of type :fasl and opens files of type
:text for editing; the method for application does nothing. You can
customize an Apple event by defining a subclass of application and
setting *application* to an instance of your class.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

filename The file to load and open for editing.

startup A boolean value that indicates whether the event is
occurring on startup. If the value is true, this function was
called upon startup.
402 Macintosh Common Lisp Reference

print-documents-handler [Generic function]

Syntax print-documents-handler(application application) appleevent
reply refcon

Description The generic function print-documents-handler handles the Print
Documents Apple event. The method for application calls print-
application-document on application for each document.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

appleevent The Apple event, which is a macptr of type AEDesc—a
record with only two fields, a type and a handle. MCL
users generally do not have to look at the record structure
directly.

reply Another Apple event record, provided by the Apple
Event Manager. If a reply is required, information should
be copied into this record using Apple Event Manager
calls.

refcon The handler reference constant, which is any Lisp object.
When the handler is installed, you have the option of
specifying some Lisp object that serves to distinguish (for
instance) two different installations of the same handler.
The reference constant is often ignored.

print-application-document [Generic function]

Syntax print-application-document (application lisp-development-
system)filename startup

print-application-document (application application)
 filename startup

 Description The generic function print-application-document is called by the
print-document-handler method for application. The print-
application-document method for lisp-development-system
prints filename; the print-application-document method for
application does nothing. You can customize an Apple event by
defining a subclass of application and setting *application* to an
instance of your class.

Arguments application The application. MCL standard event handling always
uses the value of *application*.

filename The file that the function prints.
Chapter 11: Apple Events 403

startup A boolean value that indicates whether the event is
occurring on startup. If the value is true, this function was
called upon startup.

Defining new Apple events

This section describes functions and macros used in defining new
Apple events. If you want your application to understand additional
Apple events, use the features described here.

appleevent-error [Condition type]

Syntax make-condition 'appleevent-error &rest initargs

Description If an Apple event handler finds an error, it should signal this condition.
Any MCL errors that occur while handling the Apple event are
automatically caught by Macintosh Common Lisp and handled
appropriately.

A condition of the appleevent-error condition type is created with the
Common Lisp function make-condition (see Common Lisp: The Language,
page 901).

Arguments initargs A list of keywords and values used to initialize the
appleevent-error.

:oserr An error number.

:error-string

A string of human-readable text that identifies the
error to a user.

Example

Here is an example of using appleevent-error.
(error (make-condition 'appleevent-error

 :oserr #$AEEventNotHandled

 :error-string "Didn't understand event"))
404 Macintosh Common Lisp Reference

ae-error [Macro]

ae-error-str

Syntax ae-error &body (form)+
ae-error-str error-string &body (form)+

Description These macros simplify calls to the Apple Event Manager by signaling the
appleevent-error condition if the error code returned by the Apple
Event Manager is not 0 (NoErr). The value of the call should be the value
of the body of the macro.

The ae-error-str macro lets you specify an error string; the ae-error
macro does not.

All calls to the Apple Event Manager should be wrapped in a call to either the
ae-error macro or the ae-error-str macro.

Arguments form One or more forms to be executed within the body of the
macro.

error-string A human-readable error string.

with-aedescs [Macro]

Syntax with-aedescs (vars) &body body

Description The with-aedescs macro creates a temporary record of type AEDesc for
the extent of the macro. It is similar to the macro rlet. It wraps body
within an unwind-protect, so that no matter how body is exited, with-
aedescs disposes of all its temporary records in the correct way. If the
data handle has anything in it, with-aedescs calls #_AEDisposeDesc.
Thus any memory allocated by the Apple Event Manager is properly
disposed of.

If you have a need for an AEDesc record with indefinite extent, you must
use make-record. When you want to dispose of the record, you must
explicitly call #_AEDisposeDesc, then dispose-record.

Arguments vars One or more variables.
body One or more forms to be executed within the body of the

macro.

Example

There are examples of using with-aedescs in eval-server.lisp
and tool-server.lisp in your Examples folder.
Chapter 11: Apple Events 405

check-required-params [Function]

Syntax check-required-params error-string appleevent

Description The check-required-params function uses the Apple Event Manager
to check whether all required parameters of the Apple event appleevent
have been extracted. If a parameter has been missed, the appleevent-
error condition is signaled with :oserr #$AEParamMissed and
:error-string error-string.

Arguments error-string A human-readable error string.
appleevent An Apple event.

appleevent-idle [Pascal function]

Syntax appleevent-idle

Description The appleevent-idle Pascal function should be specified whenever
the Apple Event Manager asks for a function to call while it is waiting (for
example, in calls to #_AEInteractWithUser). It should never be called
directly, only passed.

%path-from-fsspec [Function]

Syntax %path-from-fsspec fsspecptr

Description The %path-from-fsspec function extracts a Lisp pathname from
fsspecptr.

Argument fsspecptr An MCL macptr that points to an object of Macintosh type
FSSpec. For more information on macptrs, see
“Macptrs” on page 531

Installing Apple event handlers

The following functions install and deinstall Apple event handlers.
406 Macintosh Common Lisp Reference

install-appleevent-handler [Function]

Syntax install-appleevent-handler class id function &optional refcon

Description The function install-appleevent-handler installs an Apple event
handler.

Arguments class A four-letter keyword denoting the class of the event, for
example, :|aevt|.

id A four-letter keyword denoting the ID of the event, for
example, :|odoc|.

function A function or a symbol with a function binding.
refcon An optional reference identifier, which can be any MCL

object; it identifies the specific installation of a handler.

deinstall-appleevent-handler [Function]

Syntax deinstall-appleevent-handler class id

Description The deinstall-appleevent-handler function deinstalls an Apple
event handler.

Arguments class A four-letter keyword denoting the class of the event, for
example, :|aevt|.

id A four-letter keyword denoting the ID of the event, for
example, :|odoc|.

Installing handlers for queued Apple event replies

Some Apple events received in the event queue, specifically Apple
events sent with the #$kAEQueueReply mode, are replies to
previously sent Apple events. Their handlers are installed differently
from other Apple events; the handler is installed when the originating
Apple event is sent, and is automatically deinstalled after one use.

The following functions handle queued Apple event replies correctly.
Chapter 11: Apple Events 407

install-queued-reply-handler [Function]

Syntax install-queued-reply-handler appleevent-or-id function
&optional refcon

Description The install-queued-reply-handler function installs a handler for a
queued reply.

Arguments appleevent-or-id
Either a return ID number or the originating Apple event
from which a return ID number can be extracted.

function A function to be called when the reply comes back. This
function should be a normal Apple event handler as
described in “Defining new Apple events” on page 404.

refcon An optional reference identifier, which can be any MCL
object; it identifies the specific installation of a handler.

queued-reply-handler [Generic function]

Syntax queued-reply-handler(application application) appleevent reply
refcon

Description The generic function queued-reply-handler calls the installed reply
handler for the return ID of appleevent. If there is no applicable reply
handler, it calls no-queued-reply-handler.

Arguments application The application, always the value of *application*.
appleevent The Apple event, which is an MCL object of type macptr

and a record of type AEDesc—a record with only two
fields, a type and a handle. MCL users generally do not
have to look at the record structure directly.

reply Another Apple event record, provided by the Apple
Event Manager. If a reply is required, information should
be copied into this record using Apple Event Manager
calls.

refcon The handler reference constant, which is any Lisp object.
When the handler is installed, you have the option of
specifying some Lisp object that serves to distinguish (for
instance) two different installations of the same handler.
The reference constant is often ignored.
408 Macintosh Common Lisp Reference

no-queued-reply-handler [Generic function]

Syntax no-queued-reply-handler(application application)appleevent
reply refcon

Description The default method of the generic function no-queued-reply-
handler signals the appleevent-error condition with :oserr
#$AEEventNotHandled.

Arguments application The application, always the value of *application*.
appleevent The Apple event, which is an MCL object of type macptr

and a record of type AEDesc—a record with only two
fields, a type and a handle. MCL users generally do not
have to look at the record structure directly.

reply Another Apple event record, provided by the Apple
Event Manager. If a reply is required, information should
be copied into this record using Apple Event Manager
calls.

refcon The handler reference constant, which is any Lisp object.
When the handler is installed, you have the option of
specifying some Lisp object that serves to distinguish (for
instance) two different installations of the same handler.
The reference constant is often ignored.

Sending Apple events

There are no built-in functions to send Apple events within Macintosh
Common Lisp. However, it is easy to write your own functions for
sending Apple events.

To send an Apple event from Macintosh Common Lisp, do the
following four steps.

1. Create a target.

2. Create the event.

3. Put data into the Apple event.

4. Send the Apple event.

In the file appleevent-toolkit.lisp in your Examples folder, you
will find a selection of functions that help you do these steps. For
example, you can create Apple events with the MCL function create-
appleevent.
Chapter 11: Apple Events 409

Since these functions are not part of standard Macintosh Common Lisp,
load the file appleevent-toolkit.lisp to use them.

The file eval-server.lisp, also in the Examples folder, handles
eval, dosc, and scpt Apple events. This file also contains code to
communicate with HyperCard and MPW.
410 Macintosh Common Lisp Reference

411

Chapter 12:

Processes

Contents

Processes in Macintosh Common Lisp / 412
Process priorities / 413
Creating processes / 413
Process attribute functions / 415
Run and arrest reason functions / 418
Starting and stopping processes / 422
Scheduler / 424
Locks / 428
Stack groups / 433
Miscellaneous Process Parameters / 436

Macintosh Common Lisp supports multiple processes. This chapter discusses
creating processes, obtaining information about processes, and scheduling
processes. This chapter also describes two locking mechanisms for
synchronizing processes.

Processes in Macintosh Common Lisp

Processes facilitate concurrent execution of computations. They share a
single address space and communicate via shared Lisp objects. A
scheduler controls the state of the processes. It chooses which process
to run based on several conditions.

A process is either active or stopped. An active process is either running
or waiting to be scheduled. A stopped process is a process that is halted.
A process is scheduled only if it is waiting. Therefore, a stopped process
must be made active before it is scheduled.

Associated with a process are two sets of objects known as run reasons
and arrest reasons. Run reasons and arrest reasons are lists. A process is
active when it has at least one run reason and has no arrest reasons. Run
or arrest reasons are added to the lists with pushnew.

Each process you create has an initial function and a list of arguments.
The function is applied to the list of arguments when the process is first
run or when the process is reset.

When an MCL application starts up, it creates two processes. The first,
known as Initial, is responsible for processing events. The second,
known as Listener, runs the read-eval-print loop using a Lisp
Listener. If an error occurs in the event processor, a new event
processing process is created (Standin) and a break occurs in the initial
process using a new listener. Errors that occur in the stand-in event
process are ignored. So if you get an error during event processing, it is
recommended that you figure out what is wrong and get out of the
break. You exit the break by typing command-. or command-/ in the
listener for the break loop. Failure to exit the break can lead to
unexpected behavior, for example meta-. not working (because, for
instance, there is not enough room to create a new window, but the
error that would tell you so is ignored).

If there are only two processes running, then Command-. and
Command-, apply to the main process (the one that is not processing
events). To break or abort in the event process, use Option-Command.
If there are more than two processes running, a dialog appears
allowing you to choose a process to abort. If all processes are idle,
Command-. and Option-Command-. both abort the event processor.
If one process is running and one is idle, Command-. aborts the busy
process, and Option-Command-. brings up the dialog.

If you have an “init.lisp” (or “init.fasl”) file that prints anything to
standard-output, it will print in a Fred window titled
"Initialization Output".
412 Macintosh Common Lisp Reference

The class front-listener-terminal-io is a subclass of
terminal-io. It has a method for stream-current-listener
that returns *top-listener* (the top listener for *current-
process*) or the frontmost listener if one exists, otherwise a new
listener.

The default method for stream-current-listener returns either
top-listener if not nil or sets *top-listener* to a newly
created listener and returns the new listener.

All the stream methods such as stream-tyi for terminal-io
ultimately call stream-current-listener. The initial value for
both *trace-output* and *standard-output* is an instance of
front-listener-terminal-io.

Process priorities

All processes are assigned a priority. It is recommend that you do not
assign a priority greater than 0, which is the default priority. System
processes, such as the event handler, run at priority 1.

Within a priority level, the scheduler runs all processes in a round-robin
fashion. Processes having a higher priority level run to the exclusion of
processes having lower priorities. Regardless of priority, a process will
not run longer than a time interval specified when it was created (i.e.,
its quantum).

The Processes Inspector window shows the priorities of all processes.

Creating processes

Two functions are available for creating processes. These functions are
named process-run-function and make-process. The function
process-run-function creates a process and executes it
asynchronously immediately after the function is called. The function
make-process creates a process that is activated at a later time.
Chapter 12: Processes 413

The function process-run-function calls make-process,
process-preset, and process-enable. If you create a process
using the function make-process, you must call process-preset
to set the initial function and initial arguments, and call process-
enable to make the process active.

process-run-function [Function]

Syntax process-run-function name-or-kwds function &rest args

Description The process-run-function function creates a process, presets the
process to apply function to args, and starts the process.

Arguments name-or-kwds A string identifying the process or a list of alternating
keyword names and values. The keywords are:

:name A string that is the name of the process. The string
"Anonymous" is the default.

:restart-after-reset

A predicate. If the value is true, the process restarts after
a reset. If the value is nil, the process waits for
scheduling.

:priority
The priority of the process. The default is 0.

:quantum
A time interval, in ticks, during which the process can run
before the scheduler runs a different process. The default
is 6 (i.e., 0.1 seconds).

:stack-size
The initial stack size in bytes. The default is 16384.

:background-p

A value indicating whether the variable *idle* is nil
when the process is scheduled. If :background-p is
nil, the variable *idle* is set to nil each time the
process is scheduled. The default is nil.

function A function that the process executes.

args The arguments passed to function.

make-process [Function]

Syntax make-process name &key kwds

Description The make-process function creates a process named name.
414 Macintosh Common Lisp Reference

Arguments name The name of the new process.
kwds An alternating list of keywords and values. These specify

initial options for the process. Valid keywords are:
:stack-group

The stack group used by the process. If not specified, an
appropriate stack group is created.

:priority The priority of the process. The default is 0.
:quantum A time interval, in ticks, during which the process can run

before the scheduler runs a different process. The default
is 6 (i.e., 0.1 seconds).

:run-reasons
A list of reasons indicating that the process is active.

:arrest-reasons
A list of reasons indicating that the process is inactive.

:stack-size
The initial stack size in bytes. The default is 16384.

:background-p

A value indicating whether the variable *idle* is nil
when the process is scheduled. If :background-p is
nil, the variable *idle* is set to nil each time the
process is scheduled. The default is nil.

Process attribute functions

The following MCL functions return the attributes of a process.

process-name [Function]

Syntax process-name process

Description The process-name function returns the name of the process, as specified
when the process was created by the make-process function or the
process-run-function function.

Arguments process A process, such as one returned by make-process or
process-run-function.
Chapter 12: Processes 415

process-stack-group [Function]

Syntax process-stack-group process

Description The process-stack-group function returns the stack group that is
executing on behalf of the process.

Arguments process A process, such as one returned by make-process or
process-run-function.

process-initial-stack-group [Function]

Syntax process-initial-stack-group process

Description The process-initial-stack-group function returns the stack group
created when process was created. The size of the stack group is
determined by the variable *default-process-stackseg-size*.

Arguments process A process, such as one returned by make-process or
process-run-function.

default-process-stackseg-size [Variable]

Description Controls the initial size of the stack group when a process is created. The
default is 16K.

process-initial-form [Function]

Syntax process-initial-form process

Description The process-initial-form function returns a list whose car is the
initial function of the process and whose cdr is the list of arguments for
that function.

Arguments process A process, such as one returned by make-process or
process-run-function.
416 Macintosh Common Lisp Reference

process-wait-function [Function]

Syntax process-wait-function process

Description The process-wait-function function returns the function passed to
process-wait.

Arguments process A process, such as one returned by make-process or
process-run-function.

process-wait-argument-list [Function]

Syntax process-wait-argument-list process

Description The process-wait-argument-list function returns the arguments to
the function passed to process-wait.

Arguments process A process, such as one returned by make-process or
process-run-function.

process-priority [Function]

Syntax process-priority process

Description The process-priority function returns the priority of process. To
change the priority, you can use setf.

Arguments process A process, such as one returned by make-process or
process-run-function.

default-quantum [Variable]

Syntax *default-quantum*

Description The *default-quantum* variable contains the time interval during
which the process runs before another process can be scheduled. To
change the quantum, you can use setf.
Chapter 12: Processes 417

process-quantum-remaining [Function]

Syntax process-quantum-remaining process

Description The process-quantum-remaining function returns the time
remaining before rescheduling occurs. The time returned is in sixtieths of
a second (i.e., ticks).

Arguments process A process, such as one returned by make-process or
process-run-function.

Run and arrest reason functions

Each process you create has a list of run reasons and a list of arrest
reasons. Before a process becomes active, it must have at least one run
reason and no arrest reasons.

The following functions specify run reasons and arrest reasons.

process-run-reasons [Function]

Syntax process-run-reasons process

Description The process-run-reasons function returns the list of run reasons for
process.

Arguments process A process, such as one returned by make-process or
process-run-function.

process-arrest-reasons [Function]

Syntax process-arrest-reasons process

Description The process-arrest-reasons function returns the list of arrest
reasons for process.

Arguments process A process, such as one returned by make-process or
process-run-function.
418 Macintosh Common Lisp Reference

process-enable [Function]

Syntax process-enable process

Description The process-enable function activates the process specified by process.
All run and arrest reasons are removed from their respective lists and a
run reason of :enable is given to process.

Arguments process A process, such as one returned by make-process or
process-run-function.

process-disable [Function]

Syntax process-disable process

Description The process-disable function stops the process specified by process.
All run and arrest reasons are removed from their respective lists.

Arguments process A process, such as one returned by make-process or
process-run-function.

process-enable-run-reason [Function]

Syntax process-enable-run-reason process &optional (reason :user)

Description The process-enable-run-reason function adds reason to a list of run
reasons for a process. This can activate the process.

Arguments process A process, such as one returned by make-process or
process-run-function.

reason A value to add to the run reasons list. The value of reason is
compared using the eq function.

process-disable-run-reason [Function]

Syntax process-disable-run-reason process &optional (reason :user)

Description The process-disable-run-reason function removes reason from a
process's run reasons. This can deactivate the process.

Arguments process A process, such as one returned by make-process or
process-run-function.
Chapter 12: Processes 419

reason The value to remove from the run reasons list. The value of reason is
compared using the eq function.

process-enable-arrest-reason [Function]

Syntax process-enable-arrest-reason process
 &optional (reason :user)

Description The process-enable-arrest-reason function adds reason to a
process's arrest reasons. This can deactivate the process.

Arguments process A process, such as one returned by make-process or
process-run-function.

reason A value to add to the run reasons list. The value of reason
is compared using the eq function.

process-disable-arrest-reason [Function]

Syntax process-disable-arrest-reason process
 &optional (reason :user)

Description The process-disable-arrest-reason function deletes reason from a
process's arrest reasons. This can activate the process.

Arguments process A process, such as one returned by make-process or
process-run-function.

reason The value to remove from the run reasons list. The value
of reason is compared using the eq function.

process-active-p [Function]

Syntax process-active-p process

Description The process-active-p function returns t if process is active (i.e., the
process can run if its wait function allows).

Arguments process A process, such as one returned by make-process or
process-run-function.
420 Macintosh Common Lisp Reference

process-whostate [Function]

Syntax process-whostate

Description Returns the description of the process.

process-warm-boot-action [Function]

Syntax process-warm-boot-action process

Description Returns the process's warm-boot action. This value is not currently used
by MCL.

process-simple-p [Function]

Syntax process-simple-p process

Description Returns t for a simple process nil for a normal process.

process-background-p [Function]]

Syntax process-background-p process

Description Returns t if the process is running in the background.

process-last-run-time [Function]

Syntax process-last-run-time process

Description Returns the last time the process ran, as a universal time.

process-total-run-time [Function]

Syntax process-total-run-time process

Description Returns the amount of time the process has received, in ticks (sixtieths of
a second).
Chapter 12: Processes 421

process-creation-time [Function]

Syntax process-creation-time process

Description Returns the time the process was created, as a universal time.

clear-process-run-time [Function]

Syntax clear-process-run-time process

Description Resets the previous total run time to zero. This is useful for testing.

Starting and stopping processes

The following MCL functions start and stop processes.

process-preset [Function]

Syntax process-preset process function &rest args

Description The process-preset function sets the initial function of process to
function and the initial arguments to args. The process is reset so that it
throws out of its present computation and starts up by applying function
to args.

If this function is called for a stopped process, the process is not activated.

Arguments process A process, such as one returned by make-process or
process-run-function.

function A function that the process executes.

args The arguments passed to function.

process-reset [Function]

Syntax process-reset process &optional unwind-option kill without-aborts
422 Macintosh Common Lisp Reference

Description The process-reset function causes a process to throw to its top level
and apply its initial function to its initial arguments when it runs again.

Arguments process A process, such as one returned by make-process or
process-run-function.

unwind-option The possible values for this argument are:
:unless-current or nil

Unwinds unless the stack group is the one that
is currently executing. This is the default value.

:always

Unwind always. This can cause the function
process-reset to throw through its caller
rather than returning.

t Never rewinds.

kill An argument specifying whether to kill a
process after unwinding. The possible values for
this argument are :kill and nil. If kill is
:kill, the process is killed after unwinding.
The default is nil.

without-aborts MCL currently ignores without-aborts.

process-reset-and-enable [Function]

Syntax process-reset-and-enable process

Description The process-reset-and-enable function resets then enables process.

Arguments process A process, such as one returned by make-process or
process-run-function.

process-abort [Function]

Syntax process-abort &optional condition

Description Exits a process by signaling abort.

process-flush [Function]

Syntax process-flush process
Chapter 12: Processes 423

Description The process-flush function causes a process to wait indefinitely. The
functions process-preset or process-reset unflush the process.

Arguments process A process, such as one returned by make-process or
process-run-function.

process-kill [Function]

Syntax process-kill process &optional (without-aborts :ask)

Description The process-kill function destroys the process. The process is reset,
stopped, and removed from *all-processes*. Note: if the process is
arrested, it does not kill itself until it is enabled.

Arguments process A process, such as one returned by make-process or
process-run-function.

without-aborts MCL currently ignores without-aborts.

process-interrupt [Function]

Syntax process-interrupt process function &rest args

Description The process-interrupt function interrupts a process by applying
function to args.

Arguments process A process, such as one returned by make-process or
process-run-function.

function A function.

args The arguments passed to function.

Scheduler

The scheduler controls which process is run. The scheduler runs once a
tick and looks at the quantum remaining for the current process. If the
quantum has expired, it looks at every active process in a round-robin
fashion. If the wait function of a process returns true, the process is
scheduled to run.
424 Macintosh Common Lisp Reference

A process can block by calling process-block. A blocked process
will not run until it is unblocked by process-unblock.

Commonly you want to block, or wait, for an event but to give up after
a certain interval has passed. process-block-with-timeout and
process-wait-with-timeout allow the programmer to specify a
timeout period (in sixtieths of a second) after which the function should
just return.

current-process [Variable]

Syntax *current-process*

Description The *current-process* variable contains the object of the process that
is currently executing.

without-interrupts [Special Form]

Syntax without-interrupts &body body

Description The without-interrupts special form inhibits scheduling during
execution of body.

Arguments body Zero or more Lisp forms.

process-wait [Function]

Syntax process-wait whostate function &rest args

Description The process-wait function causes the current process to wait until the
application of function to args returns true. Bindings when process-
wait is called are not in effect when function executes because function is
executed in the scheduler's environment.

Arguments whostate A string that describes the reason for waiting. This string
is displayed in the Processes Inspector window when
viewing process states.

function A function that must be functionp, not a symbol.

args The arguments applied by function.
Chapter 12: Processes 425

process-block [Function]

Syntax process-block process whostate

Description The process-block function causes process process to block. The
process remains blocked until process-unblock is
called on it.

Arguments process A process, such as one returned by make-process or
process-run-function.

whostate A string that describes the reason for blocking. This string
is displayed in the Processes Inspector window when
viewing process states.

sleep [Function]

Syntax sleep seconds

Description The sleep function causes the current process to wait for a period of time
specified by seconds.

Arguments seconds A number that specifies time in seconds.

process-wait-with-timeout [Function]

Syntax process-wait-with-timeout whostate time function &rest args

Description The process-wait-with-timeout function waits for a period of time
to elapse or waits until the application of function to args returns true
before returning. If time is nil, this function behaves the same as
process-wait.

Arguments whostate A string that describes the reason for waiting. This string
is displayed in the Processes Inspector window when
viewing process states.

time The amount of time in intervals of sixtieths of a second
(i.e., ticks).

function A function that must be functionp, not a symbol.

args The arguments used by function.
426 Macintosh Common Lisp Reference

process-block-with-timeout [Function]

Syntax process-block-with-timeout process time whostate

Description The process-block-with-timeout function causes process process to
stay blocked for a period of time to elapse or until the process is
unblocked. If time is nil, this function behaves the same as process-
block.

Arguments process A process, such as one returned by make-process or
process-run-function.

time The amount of time in intervals of sixtieths of a second
(i.e., ticks).

whostate A string that describes the reason for blocking This string
is displayed in the Processes Inspector window when
viewing process states.

process-unblock [Function]

Syntax process-unblock process

Description The process-unblock function unblocks process.

Arguments process A process, such as one returned by make-process or
process-run-function.

process-allow-schedule [Function]

Syntax process-allow-schedule

Description The process-allow-schedule function explicitly calls the scheduler
to allow other processes to run.

active-processes [Variable]

Syntax *active-processes*

Description The *active-processes* variable is a list of active processes.
Chapter 12: Processes 427

all-processes [Variable]]

Syntax *all-processes*

Description The *all-processes* variable is a list of all processes that exist.

Locks

Locking mechanisms are an aid to handling process synchronization. In
general, they are used for processes that share a resource. Locks prevent
a process from executing while another process owns the lock. Once a
process obtains the lock, the process prevents other processes that
require the lock from executing.

MCL provides two methods for process synchronization. The first
method consists of creating and obtaining a lock. The second method
creates a queue of processes; the queued processes execute in the order
that they were added to the queue.

The following MCL forms control these locking mechanisms.

make-lock [Function]

Syntax make-lock

Description The make-lock function creates and returns a lock.

process-lock [Function]

Syntax process-lock lock &optional lock-owner interlock-function

Description The process-lock function obtains a lock. This function waits until the
lock is free before returning. If lock-owner does not hold the lock,
process-lock waits until the lock becomes free, then grabs the lock and
calls interlock-function (atomically). If lock-owner holds the lock, interlock-
function is not called.

Arguments lock The lock returned from make-lock.
428 Macintosh Common Lisp Reference

lock-owner The owner of the lock. The default is the current process.
The value of lock-owner is compared using the eq
function.

interlock-function
A function that is executed after process-lock obtains
the lock.

lock-owner [Function]

Syntax lock-owner lock

 Description The lock-owner function returns the owner of the lock.

Arguments lock A lock returned by make-lock.

with-lock-grabbed [Macro]

Syntax with-lock-grabbed (lock &optional lock-owner whostate) &body body

 Description The with-lock-grabbed macro executes body while lock is held. After
executing body, lock is released.

Arguments lock The lock returned by make-lock.

lock-owner The owner of the lock. The default is the current process.

whostate A string that is displayed in the Processes Inspector
window.

body Zero or more Lisp forms.

process-unlock [Function]

Syntax process-unlock lock &optional lock-owner (error-p t)

Description The process-unlock function releases a lock. If the lock was free or
locked by a different process and error-p is true, an error is signaled. If
error-p is true, the lock is not released when the lock is held by a different
process; if error-p is nil, the lock is released even when the lock is held by
a different process.

Arguments lock The lock returned by make-lock.
Chapter 12: Processes 429

lock-owner The owner of the lock. The default is the current process.
The value of lock-owner is compared using the eq
function.

error-p A value indicating whether to signal an error condition.

store-conditional [Function]

Syntax store-conditional lock old new

Description This MCL 4.0 function checks to see whether the the lock-value of lock
is eq to old, and, if so, it stores new into the cell. The test and the set are
done as a single atomic operation. store-conditional returns t if the
test succeeded and nil if the test failed. If lock is known at compile time to
be of type lock, the code will be inlined, hence very fast.

This function is not available in MCL 3.1.

Arguments lock A lock
old Any lisp object
new Any lisp object

If the lock argument to a process-lock or process-unlock form is
known at compile time to be of type lock, then it will compile into an
initial call to store-conditional (which will be inlined) followed,
only if the store-conditional fails, by an out-of-line call to
process-lock or process-unlock.

make-process-queue [Function]

Syntax make-process-queue name &optional size

Description The make-process-queue function creates and returns a queue for
processes requesting access to a shared resource. The queue controls the
order in which processes are executed on a first-in-first-out basis.

Arguments name The identifier for the process queue.
size The maximum number of processes that can join the

queue. The default is an unlimited number.

process-enqueue [Function]

Syntax process-enqueue queue &optional queue-owner whostate
430 Macintosh Common Lisp Reference

Description The process-enqueue function adds a process to a queue. If the queue
is empty, the process becomes the owner of the queue, and the function
returns. If queue is not empty and not full, the function adds the process to
the end of queue.

The process-enqueue function waits until the process reaches the front of
the queue and becomes the owner of the queue. If queue is full, process-
enqueue waits until queue is not full before adding the process to the end of
queue.

By default, the process added to the queue is the current process. The optional
argument queue-owner specifies a different process to place on the queue.

Arguments queue The queue returned by make-process-queue.
queue-owner The process. The default is the current process. If the

process is already on the queue, an error is signaled. The
value of queue-owner is compared using the eq function.

whostate A string that describes the reason for waiting. This string
is displayed in the Processes Inspector window when
viewing process states. "Lock" is the default value.

process-enqueue-with-timeout [Function]

Syntax process-enqueue-with-timeout queue timeout
&optional queue-owner whostate

Description The process-enqueue-with-timeout function adds a process to a
queue. If the queue is empty, the process is placed on queue, the process
becomes the owner of the queue, and the function returns. If queue is not
empty and not full, the function adds the process to the end of queue.

The process waits until it reaches the front of the queue before it becomes the
owner of the queue. If queue is full, process-enqueue waits until queue is not
full before adding the process to the end of queue.

By default, the process added to the queue is the current process. The optional
argument queue-owner specifies a different process to place on the queue.

If the process does not reach the front of the queue within the time interval
timeout, the process is dequeued.

Arguments queue The queue returned by make-process-queue.

timeout The amount of time in intervals of sixtieths of a second
(i.e., ticks). Additionally, the keyword :usurp is a valid
value for timeout. When timeout is :usurp, the process is
placed unconditionally at the front of the queue.
Chapter 12: Processes 431

queue-owner The process. The default is the current process.

whostate A string that describes the reason for waiting. This string
is displayed in the Processes Inspector window when
viewing process states. "Lock" is the default value.

with-process-enqueued [Macro]

Syntax with-process-enqueued (queue &optional queue-owner whostate
(signal-dequeue-errors t))
&body body

 Description The with-process-enqueued macro executes body while queue is
controlled by queue-owner. After executing body, queue-owner relinquishes
control of queue.

Arguments queue The queue returned by make-process-queue.

queue-owner The owner of the queue. The default is the current
process.

whostate A string that is displayed in the processes Inspector
window.

signal-dequeue-errors
A value that determines whether to signal an error
condition. When signal-dequeue-errors is true, an error is
signaled if queue-owner does not control queue when
process-dequeue is called on exiting
with-process-enqueue. The default value is t.

body Zero or more Lisp forms.

process-dequeue [Function]

Syntax process-dequeue queue &optional queue-owner (error-p t)

Description The process-dequeue function relinquishes control of a queue so that
another process can control the queue. If queue-owner controls the queue,
process-dequeue removes the process from the queue, which gives the
next process on the queue an opportunity to run. If queue-owner does not
control the queue and error-p is true, an error is signaled.

Arguments queue The queue returned by make-process-queue.

queue-owner The process to remove from the queue. The default is the
current process.
432 Macintosh Common Lisp Reference

error-p A value indicating whether to signal an error condition.
The default value is t.

process-queue-locker [Function]

Syntax process-queue-locker queue

Description The process-queue-locker function returns the process that controls
queue or returns nil if the queue is empty.

Arguments queue The queue returned by make-process-queue.

reset-process-queue [Function]

Syntax reset-process-queue queue

Description The reset-process-queue function removes all processes from queue.
When this function returns, the queue is empty.

Arguments queue The queue returned by make-process-queue.

Stack groups

Stack groups are used to implement coroutines, generators, and
processes. A stack group represents a computation and its internal
state, including the control, value, and special binding stacks.

There is always one current stack group. When a stack group becomes
the current stack group, that stack group is said to be resumed. The
former current stack group is known as the resumer. The resumer can
pass an object to the new current stack group, with the restriction that
stack allocated objects should not be passed between stack groups.

The following MCL functions create, initialize, and resume stack
groups.

make-stack-group [Function]

Syntax make-stack-group name &optional stack-size
Chapter 12: Processes 433

Description The make-stack-group function creates and returns a new stack group.

Arguments name An object that identifies the stack group.

stack-size The size of the new stack. The default stack-size is 16384
bytes.

stack-group-preset [Function]

Syntax stack-group-preset stack-group function &rest args

Description The stack-group-preset function initializes a stack group. When
stack-group is resumed the stacks are empty and function is applied to args.

Arguments stack-group A stack group returned by make-stack-group.

function The function applied when stack-group is resumed.

args The arguments passed to function.

stack-group-resume [Function]

Syntax stack-group-resume stack-group value

Description The stack-group-resume function resumes stack-group and passes the
object value to stack-group. The current stack group becomes stack-group's
resumer.

Arguments stack-group A stack group returned by make-stack-group.

value An object that the former current stack group passes to
the new current stack group.

stack-group-return [Function]

Syntax stack-group-return value

Description The stack-group-return function resumes the current stack group's
resumer. The object value is passed to the current stack group's resumer.

Arguments value An object that the current stack group passes to its
resumer.
434 Macintosh Common Lisp Reference

previous-stack-group [Function]

Syntax previous-stack-group stack-group

Description The previous-stack-group function returns the resumer of
stack-group.

Arguments stack-group A stack group returned by make-stack-group.

symbol-value-in-stack-group [Function]

Syntax symbol-value-in-stack-group symbol stack-group

Description The symbol-value-in-stack-group function returns the value of the
special variable symbol in stack-group. To change the value, you can use
setf.

Arguments symbol A special variable. If symbol is not bound in
stack-group, the global value is returned.

stack-group A stack group returned by make-stack-group.

symbol-value-in-process [Function]

Syntax symbol-value-in-process symbol process

Description The symbol-value-in-process function returns the value of the
special variable symbol in process.. To change the value, you can use setf.

Arguments symbol A special variable. If symbol is not bound in
stack-group, the global value is returned.

process A process, such as one returned by make-process or
process-run-function.
Chapter 12: Processes 435

Miscellaneous Process Parameters

autoclose-inactive-listeners [Variable]

Description Controls the behavior of inactive Listeners. If set to true, listener windows
automatically close when they become inactive. The default value is nil.

bind-io-control-vars-per-process [Variable]

Description Controls whether or not I/O control variables are shared or per-process. If
set to true, new processes get their own bindings of the I/O control
variables(see CLtL2 Table 22-7). The default value is nil.
436 Macintosh Common Lisp Reference

437

Chapter 13:

Streams

Contents

Implementation of streams / 438
MCL expressions relating to streams / 438
Obsolete functions / 450

This chapter discusses the MCL implementation of streams and defines MCL
classes and generic functions for dealing with streams.

Implementation of streams

Macintosh Common Lisp implements all of the Common Lisp I/O
(input/output) functions by means of streams.

Macintosh Common Lisp implements streams as a simple class of
objects, based on the abstract class stream. There are only a few things
a stream needs to know how to do.

Output streams need to have methods defined for character and string
output.

Input streams need to have methods defined to read and “unread”
characters (unreading allows “peeking ahead”). Input streams also
need to know how to tell when they are at end of file.

You can define your own specialized stream types. The file serial-
streams.lisp in your Examples folder defines a stream that does
input and output through the Macintosh serial port.

MCL expressions relating to streams

The following MCL classes and generic functions deal with streams.

stream [Class name]

Description The stream class is the class from which all streams inherit. It is an
abstract class. It should not be directly instantiated but instead should be
used to create new subclasses. It has one initialization argument,
:direction.

input-stream [Class name]

Description The input-stream class is the class of input streams, built
on stream.
438 Macintosh Common Lisp Reference

initialize-instance [Generic function]

Syntax initialize-instance (stream input-stream) &rest initargs

Description The primary method on initialize-instance for input-stream
initializes an input stream. (When instances are actually made, the
function used is make-instance, which calls initialize-instance.)
Input streams have one additional initialization argument.

Arguments stream A stream.
initargs This is the additional initialization argument for input

streams.
:direction The direction of the input stream. The default value of

:direction is :input.

output-stream [Class name]

Description The output-stream class is the class of output streams, built
on stream.

initialize-instance [Generic function]

Syntax initialize-instance (stream output-stream) &rest
initargs

Description The primary method on initialize-instance for output-stream
initializes an output stream. (When instances are actually made, the
function used is make-instance, which calls initialize-instance.)
Output streams have one additional initialization argument.

Arguments stream A stream.
initargs This is the additional initialization argument for output

streams.
:direction The direction of the output stream. The default value of

:direction is :output.

stream-direction [Generic function]

Syntax stream-direction (stream stream)
Chapter 13: Streams 439

Description The stream-direction generic function reads the direction of stream. It
will return:input, :output, :io, or :closed.

Argument stream A stream.

stream-tyo [Generic function]

Syntax stream-tyo (stream output-stream) char

Description The stream-tyo generic function directs stream to output char in an
appropriate way; for example, if the stream is a window, stream-tyo
displays the character in the window. This function must be defined for all
output streams.

Arguments stream A stream.
char A character or an ASCII value.

Example

The Common Lisp function write-char can be defined as
? (defun write-char

 (char &optional (stream *standard-output*))

 (if (eq stream t) (setq stream *terminal-io*))

 (stream-tyo stream char))

WRITE-CHAR

stream-force-output [Generic function]

Syntax stream-force-output (stream output-stream)

Description The generic function stream-force-output physically writes all
pending output. It is used for streams that buffer their write operations.
For example, it doesn’t make sense to do an operating system call or a
physical disk access to write a byte every time stream-tyo is applied to
a disk file. The output is stored in a buffer and written to disk after a
certain accumulation or when stream-force-output is called.
Buffering can significantly increase the speed of streams that have a high
per-operation overhead (such as disk output and graphics).

The stream-force-output function should be defined for buffered output
streams.

Argument stream An output stream.
440 Macintosh Common Lisp Reference

stream-tyi [Generic function]

Syntax stream-tyi (stream input-stream)

Description The generic function stream-tyi reads the next character from the
stream and returns it. If this function is at end-of-file, it returns nil. Input
functions such as read and read-line work by making repeated calls to
stream-tyi. This function must be defined for all input streams.

The stream-tyi function should never be applied to a Listener directly, but
only via *terminal-io*.

Argument stream An input stream.

Example

The Common Lisp function read-char can be defined as
? (defun read-char (&optional (stream *standard-input*)

 (eof-error-p t)

 eof-value recursive-p)

 (declare (ignore recursive-p))

 (if (eq stream t)

 (setq stream *terminal-io*)

 (or (stream-tyi stream)

 (if eof-error-p

 (error "End of file on ~s" stream)

 eof-value))))

READ-CHAR

stream-untyi [Generic function]

Syntax stream-untyi (stream input-stream) char

Description The generic function stream-untyi unreads char from the stream,
effectively pushing it back onto the head of the stream. The next call to
stream-tyi returns char. The stream-untyi function cannot be called
several times in a row; it can be called only once for each call to stream-
tyi, and char must be the character that was returned by the last call to
stream-tyi. The stream-untyi function must be defined for all input
streams.
Chapter 13: Streams 441

The stream-untyi function is usually implemented in one of two ways:
If the stream contains a pointer to a file, string, or other data record,
stream-untyi simply decrements the pointer. If the stream does not
contain a pointer to a data record, then stream-untyi sets a variable to
the value of char. The stream-tyi function cooperates by checking the
value of the variable; if it is not nil, it returns that value instead of getting
input from the normal source.

Arguments stream An input stream.
char The last character read from the stream.

Example

The Common Lisp function unread-char can be defined as
? (defun unread-char (char &optional

 (stream *standard-input*))

 (if (eq stream t)

 (setq stream *terminal-io*)

 (stream-untyi stream char)))

UNREAD-CHAR

stream-writer [Generic function]

Syntax stream-writer (stream stream)

Description The generic function stream-writer returns two values, a function and
a value. Applying the function to the value is equivalent to applying
stream-tyo to the stream, but is usually much faster. Users can
specialize stream-writer, but they need to be sure that there are no
stream-tyo methods specialized on a subclass of the class on which the
stream-writer method is specialized. The maybe-default-
stream-writer macro knows how to ensure that there are no such
stream-tyo methods.

Argument stream A stream.

stream-reader [Generic function]

Syntax stream-reader (stream stream)
442 Macintosh Common Lisp Reference

Description The generic function stream-reader returns two values, a function and
a value. Applying the function to the value is equivalent to applying
stream-tyi to the stream, but is usually much faster. Users can
specialize stream-reader, but they need to be sure that there are no
stream-tyi methods specialized on a subclass of the class on which the
stream-reader method is specialized. The maybe-default-stream-
reader macro knows how to ensure that there are no such stream-tyi
methods.

Argument stream A stream.

Example

Here is an example of the use of stream-reader and stream-
writer to define a function that, given two filenames, copies the data
fork of the first file to the data fork of the second file. The second file is
created if it does not exist. Because :if-exists :overwrite has not
been specified for the second file, the function signals an error if the
second file already exists.

? (defun my-copy-file (from-file to-file &aux char)

 (with-open-file (from-stream from-file)

 (with-open-file

 (to-stream to-file :direction :output)

 (multiple-value-bind

 (reader reader-arg)

 (stream-reader from-stream)

 (multiple-value-bind

 (writer writer-arg)

 (stream-writer to-stream)

 (loop

 (unless

 (setq char (funcall reader reader-arg))

 (return))

 (funcall writer writer-arg char)))))))

MY-COPY-FILE

maybe-default-stream-writer [Macro]

Syntax maybe-default-stream-writer (stream class) {form}+

Description If the stream-tyo method for stream is the same as the one for an instance
of class, the macro maybe-default-stream-writer returns the value
or values of the last form. Otherwise, it returns two values: the effective
method for applying #'stream-tyo to stream, and stream itself.
Chapter 13: Streams 443

Because maybe-default-stream-writer returns the effective
method rather than #'stream-tyo, it avoids method-dispatch.

Arguments stream A stream.
class A Lisp class.
form One or more Lisp forms.

Example

See the example under maybe-default-stream-reader.

maybe-default-stream-reader [Macro]

Syntax maybe-default-stream-reader (stream class) {form}+

Description If the stream-tyi method for stream is the same as the one for an instance
of class, the macro maybe-default-stream-reader returns the value
or values of the last form. Otherwise, it returns two values: the effective
method for applying #'stream-tyi to stream, and stream itself. Because
maybe-default-stream-reader returns the effective method rather
than #'stream-tyi, it avoids method-dispatch.

Arguments stream A stream.
class A Lisp class.
form One or more Lisp forms.

Example

Here are examples of stream-writer and stream-reader created
using maybe-default- methods.

The MCL file-stream class stores a Macintosh pointer containing a
parameter block and a buffer for use with the Macintosh #_Read and
#_Write traps. Its stream-writer method looks something like this:
? (defvar *file-stream-class* (find-class 'file-stream))

FILE-STREAM-CLASS

? (defmethod stream-writer ((stream file-stream))

 (maybe-default-stream-writer (stream *file-stream-class*)

 (values #'%ftyo ; low-level character output
function

 (fblock stream)))) ; parameter block pointer

The stream-reader method for the file-stream class is very
similar to its stream-writer method:
? (defmethod stream-reader ((stream file-stream))

 (maybe-default-stream-reader (stream *file-stream-class*)
444 Macintosh Common Lisp Reference

 (values #'%ftyi ; low-level character output function

 (fblock stream)))) ; parameter block pointer

STREAM-READER

stream-peek [Generic function]

Syntax stream-peek (stream stream)

Description The stream-peek generic function returns the last character read into
stream without removing it from the queue. The next call to stream-tyi
or stream-peek reads the same character.

Argument stream A stream.

The default stream-peek method is defined as
? (defmethod stream-peek ((stream stream))

 (let ((char (stream-tyi stream)))

 (when char (stream-untyi stream char) char)))

#<STANDARD-METHOD STREAM-PEEK (STREAM)>

stream-column [Generic function]

Syntax stream-column (stream stream)

Description The generic function stream-column returns the current column of the
stream. This is used for tabbing purposes and may also be used by
stream-fresh-line.

Argument stream A stream.

stream-line-length [Generic function]

Syntax stream-line-length (stream stream)

Description The generic function stream-line-length returns the line length of
the stream.

Argument stream A stream.
Chapter 13: Streams 445

stream-fresh-line [Generic function]

Syntax stream-fresh-line (stream stream)

Description The generic function stream-fresh-line is called by the Lisp function
fresh-line. The usual version simply prints a new line. Output streams
should provide a definition of this function if they want fresh-line to
work properly.

The general idea behind fresh-line is that it prints a new line if the
stream is not already at the beginning of a line.

Argument stream A stream.

stream-write-string [Generic function]

Syntax stream-write-string (stream stream) string start end

Description The generic function stream-write-string writes to stream the
characters of string between start and end.

The expression
 (stream-write-string stream string 0 (length
string))

will be faster than
 (dotimes (i (length string))

 (stream-tyo stream (char string i)))

Arguments stream A stream.
string A string.
start The beginning of the range to copy. The location 0 is

before the first character, 1 between the first and the
second, and so on.

end The end of the range to copy.

Example
? (stream-write-string *terminal-io* "Hi there" 0 1)

H

NIL

stream-clear-input [Generic function]

Syntax stream-clear-input (stream stream)
446 Macintosh Common Lisp Reference

Description The generic function stream-clear-input deletes all pending input
from the stream. This function is normally defined only for buffered input
streams, such as the terminal stream or serial streams.

Argument stream A stream.

stream-eofp [Generic function]

Syntax stream-eofp (stream stream)

Description The generic function stream-eofp returns true if the stream is at its end
(that is, if there is no more data to read) and false if there is more data to
read from the stream.

The stream-eofp function must be defined for all input streams.

Argument stream A stream.

stream-listen [Generic function]

Syntax stream-listen (stream stream)

Description The generic function stream-listen returns true if there are more
characters to read from an input stream and false if there are no more
characters. The stream-listen method for stream is simply (not
(stream-eofp)). The stream-listen function does not normally
need to be specialized for new stream classes.

Argument stream A stream.

stream-rubout-handler [Generic function]

Syntax stream-rubout-handler (stream stream) reader

Description The generic function stream-rubout-handler is called by read and
read-line to deal with user editing of the input. This function should
call reader with one argument, a stream. The default method, specialized
on stream, simply calls reader with an argument of stream and provides
no deletion handling.

Arguments stream A stream.
reader A stream reader.

Example
Chapter 13: Streams 447

The following code handles deletions (“rubouts”) for a hypothetical
serial I/O stream talking to a dumb terminal:
? (defclass serial-io-stream (input-stream output-stream) ())

#<STANDARD-CLASS SERIAL-IO-STREAM>

? (defclass serial-io-stream-rubout-handler

 (input-stream output-stream)

 ((stream :initarg :stream :reader serial-io-stream)

 (buffer :initform (make-array 10

 :fill-pointer 0

 :adjustable t

 :element-type 'character)

 :reader serial-io-stream-buffer)

 (mark :initform nil :accessor serial-io-stream-mark)))

#<STANDARD-CLASS SERIAL-IO-STREAM-RUBOUT-HANDLER>

? (defmethod stream-tyi ((rubout-handler

 serial-io-stream-rubout-handler))

 (let* ((mark (serial-io-stream-mark rubout-handler))

 (buffer (serial-io-stream-buffer rubout-handler))

 (size (fill-pointer buffer))

 (stream (serial-io-stream rubout-handler))

 (peek (stream-peek stream)))

 (if (and mark (not (eql peek #\rubout)))

 (prog1

 (aref buffer mark)

 (setf (serial-io-stream-mark rubout-handler)

 (and (< (incf mark) size) mark)))

 (let ((char (stream-tyi stream)))

 (when char

 (if (eql #\rubout char)

 (unless (eql 0 size)

 (tyo #\backspace stream)

 (tyo #\space stream)

 (tyo #\backspace stream)

 (setf (fill-pointer buffer) (decf size))

 (setf (serial-io-stream-mark buffer)

 (and (> size 0) 0))

 (throw rubout-handler nil))

 (progn

 (vector-push-extend char buffer)

 char)))))))

#<STANDARD-METHOD STREAM-TYI (SERIAL-IO-STREAM-RUBOUT-
HANDLER)>

? (defmethod stream-rubout-handler
448 Macintosh Common Lisp Reference

 ((stream serial-io-stream) reader)

 (let ((rubout-handler

 (make-instance 'serial-io-stream-rubout-handler

 :stream stream)))

 (loop

 (catch rubout-handler

 (return (funcall reader rubout-handler))))))

#<STANDARD-METHOD STREAM-RUBOUT-HANDLER (SERIAL-IO-STREAM
T)>

stream-close [Generic function]

Syntax stream-close (stream stream)

Description The generic function stream-close tells the stream that a program is
finished with it. After being closed, the stream cannot be used for input or
output. Methods on stream-close set the stream-direction to
:closed and may perform various cleanup operations, such as disposing
of data structures that are no longer needed.

Some streams may be reopened after they have been closed. However,
reopened streams have generally lost their previous state.

Argument stream A stream.

stream-abort [Generic function]

Syntax stream-abort (stream stream)

Description When the function close is called with a true :abort keyword, the
generic function stream-abort is called. The stream-abort generic
function should handle any bookkeeping for an abnormal closing of the
stream.

Argument stream A stream.
Chapter 13: Streams 449

Obsolete functions

Since Macintosh Common Lisp now uses generic functions, the
following two functions are obsolete. They are included for backward
compatibility.

tyi [Function]

Syntax tyi &optional stream

Description The tyi function reads one character from stream and returns it, using
stream-tyi. The character is echoed if stream is interactive, except that
the DEL character is not echoed. This function is included for
compatibility with earlier versions of Lisp.

Argument stream A stream. The default value is *standard-input*.

tyo [Function]

Syntax tyo char &optional stream

Description The tyo function outputs char to stream, using stream-tyo. It is included
for compatibility with earlier versions of Lisp.

Arguments char An integer or a character object.
stream A stream. The default value is *standard-output*.
450 Macintosh Common Lisp Reference

Chapter 14:

Programming the Editor

Contents

Fred Items and Containers / 453
Fred windows and Fred views / 454
Fred dialog items / 454
Buffers and buffer marks / 455
Copying and deletion mechanism: The kill ring / 456

MCL expressions relating to buffer marks / 456
Using multiple fonts / 472

Global font specifications / 472
Style vectors / 473

Functions for manipulating fonts and font styles / 473
Fred classes / 478
Fred functions / 486
Functions implementing standard editing processes / 506

Multiple-level Undo / 508
Functions relating to Undo / 509

Working with the kill ring / 512
Functions for working with the kill ring / 513
Using the minibuffer / 514
Functions for working with the minibuffer / 514

Defining Fred commands / 516
Fred command tables / 517

Keystroke codes and keystroke names / 517
Command tables / 519
Fred dispatch sequence / 519
MCL expressions associated with keystrokes / 519
MCL expressions relating to command tables / 523

This chapter describes the functions and concepts needed to program Fred the
editor. You should read it if you are creating an application that uses text
editing, or if you want to extend the editing capabilities of Fred, to improve
your programming environment.
451

Before reading this chapter you should be familiar with the standard
functionality of the editor, Fred, discussed in Chapter 1: Editing in Macintosh
Common Lisp. You should also be familiar with the way that Macintosh
Common Lisp handles windows, discussed in Chapter 4: Views and
Windows.

If you are creating editable dialog items, you should also read Chapter 5:
Dialog Items and Dialogs.
452 Macintosh Common Lisp Reference

Fred Items and Containers

Text editing in MCL takes place inside instances of fred-item and
fred-dialog-item. Both of these classes inherit from fred-mixin.
fred-mixin provides the basic functionality for displaying and
editing text with Fred.

fred-dialog-items are used to create editable text fields inside
dialog boxes. fred-items are used inside fred-windows, the built-
in text editor windows of MCL

Every Fred window contains at least one scrolling-fred-view
which in turn contains a fred-item. (Although fred-window and
scrolling-fred-view do not inherit from fred-item, they do
support many Fred operations by delegating to the fred-item they
contain.)

In addition to containing a fred-item, every scrolling-fred-view also
contains one or two scroll bars.

The actual text being edited in a Fred item or Fred dialog-item is stored
in a buffer. Macintosh Common Lisp does not keep a file open while it
is being edited. It merely reads the file into a buffer, lets you edit it, then
reopens the file when you save the buffer.

A buffer is implemented like a more efficiently editable string.
(Conceptually, it is a sequence of characters, each of which has an
associated font.) The internal representation of a Fred buffer allows
characters to be inserted or deleted quickly.

Operations are performed within buffers at places called buffer marks.
Roughly, a buffer mark indicates any interesting place in the buffer,
such as the place where text is inserted, the beginning of a selection
range, or the point at which text becomes visible in the window. Buffer
marks contain a position and a pointer to their owning buffer. A Fred
buffer can be accessed only through its buffer marks.

The buffer is displayed in the window containing the Fred item. A
window’s contents include the whole buffer, not only the part currently
visible on screen (so, to take a trivial example, you can select or search
the entire contents of a Fred window, not only the visible portion of the
buffer).

In general, higher-level editing operations, such as setting fonts, are
implemented as methods applied to instances of fred-mixin, the
class that governs the behavior of Fred items and Fred dialog items.
Fred windows and scrolling Fred views also often have delegating
methods on these high-level operations. Low-level operations take a
buffer mark as an argument.
Chapter 15 Programming the Editor 453

Each of these concepts is discussed in more detail in the paragraphs that
follow.

Fred windows and Fred views

Fred windows are the main editors of MCL. The class fred-window is
a subclass of window and a superclass of listener.

Fred windows are output streams and may be used in any situation that
calls for a stream. Characters output to a Fred window stream are
inserted at the insertion point, which corresponds to a buffer mark.
Stream output to Fred windows is buffered and is not displayed until
fred-update or force-output is called.

A Fred window contains:

■ at least one scrolling Fred view

■ a minibuffer, a small independent display at the bottom of the window,
used to display MCL messages. The minibuffer is also a Fred item.

■ an insertion point, indicated by a blinking vertical line, where typing is
usually inserted in the window. The insertion point is a buffer mark.

■ a display start position, indicating the beginning of the first line of the
buffer displayed in the buffer’s window. The display start position is also
a buffer mark.

■ a filename string.

Fred windows may also have

■ a selection range, which is displayed in inverse video and is defined by
a buffer mark. The buffer mark that defines the selection range is
distinct from the insertion point, although most Fred window
functions try to keep the insertion point at one end of the selection
range.

A scrolling Fred view contains:

■ a Fred item, which displays the contents of a buffer.

■ zero, one, or two scroll bars.

Fred dialog items

Fred dialog items, a subclass of simple-view, include any dialog item
with editable text. Their class is fred-dialog-item, whose
superclasses include the class fred-mixin and an internal class whose
superclasses are key-handler-mixin and dialog-item.
454 Macintosh Common Lisp Reference

A Fred dialog item has

■ a view size

■ a view position

■ a default font

■ one or more colors

■ an event handler

■ a key handler

■ text

It also knows whether or not it is enabled.

For a full description of dialog items, see “Dialog items” on page 188.

Buffers and buffer marks

A buffer is a sequence of characters much like a string. However, the
implementation of buffers makes the insertion and deletion of
characters much more efficient than with strings. The characteristics of
buffers are inherited from fred-mixin.

A buffer has

■ a set of buffer marks

■ a modification counter, which is incremented any time the buffer is
modified

■ a property list

There is no data type for buffers; the representation of buffers is internal
to the MCL implementation. Buffers keep track of their operations by
using buffer marks and are accessed only through buffer marks.

A buffer mark contains a position and a pointer to its buffer. A buffer
mark indicates a position in a buffer where some editing process might
take place. For example, the position at which new characters can be
entered into a buffer is indicated by a buffer mark. The positions of
buffer marks are recalculated each time the buffer is modified. For
example, when you type new characters or paste a selection into a
buffer, the position of the buffer mark corresponding to the current
insertion point changes, and so do the positions of buffer marks located
after the newly inserted text.

Buffer marks are defined by the data type buffer-mark. An instance
of buffer-mark contains

■ a pointer to its owning buffer

■ a position in its buffer, dynamically updated as the buffer changes
Chapter 15 Programming the Editor 455

The following properties of a buffer mark can be determined:

■ A direction, forward or backward. The direction determines what
happens when a character is inserted at the position of the mark.
Forward marks move forward, placing themselves after the new
character; backward marks stay behind the new character. The
insertion point is initially a forward mark but can be changed to a
backward mark.

■ Other information, such as contents and font information.

Copying and deletion mechanism: The kill ring

For deletion and copying, Fred supports both an Emacs-style kill ring
and the Macintosh Clipboard.

The kill ring is a list of blocks of text that have been deleted. Any
command that deletes or copies text saves that text on the kill ring.
There is only one kill ring, shared among all buffers; with it you can
move or copy text from buffer to buffer. Cut, Copy, and Emacs
commands such as Control-K (ed-kill-line) move text onto the kill
ring. Also saved on the kill ring is text deleted incidentally, for example,
text that is deleted when you type or paste over a selection. Saving all
deleted text onto the kill ring provides a level of safety not supported
by the usual Macintosh Undo mechanism.

The Macintosh commands Cut, Copy, and Paste move text to and from
the Clipboard. The Paste command ignores the kill ring, always pasting
from the Clipboard.

See “Working with the kill ring” on page 512 for additional details.

MCL expressions relating to buffer marks

The following MCL expressions relate to buffer marks.

buffer-mark [Class name]

Description The buffer-mark class is the class of buffer marks.

The following functions govern the operation of buffers.
456 Macintosh Common Lisp Reference

buffer-mark-p [Function]

Syntax buffer-mark-p thing

Description The buffer-mark-p function returns t if and only if thing is a buffer
mark; otherwise, it returns nil. It has the same effect as (typep thing
'buffer-mark).

Argument thing Any Lisp object.

make-mark [Function]

Syntax make-mark buffer-mark &optional position backward-p

Description The make-mark function creates and installs a new mark in the same
buffer as buffer-mark, with the specified position and direction. If given,
position must be a mark or an integer. The new mark is returned.

Arguments buffer-mark A buffer mark.
position A position in a buffer. It can be nil (the default), an

integer offset from the beginning of the buffer, a mark, or
t, meaning the end of the buffer. Its default value is
(buffer-position buffer-mark).

backward-p A Boolean value. If its value is t, a backward mark is
created. The default value is nil.

set-mark [Function]

Syntax set-mark buffer-mark position

Description The set-mark function sets the position of buffer-mark to position and
returns the updated mark.

Arguments buffer-mark A buffer mark.
position A position in a buffer. It can be an integer offset from the

beginning of the buffer, a mark, or t, meaning the end of
the buffer.

move-mark [Function]

Syntax move-mark buffer-mark &optional distance
Chapter 15 Programming the Editor 457

Description The move-mark function moves buffer-mark an amount specified by
distance, which should be an integer. This function is equivalent to (set-
mark buffer-mark (+ (buffer-position buffer-mark) distance)).

Arguments buffer-mark A buffer mark.
distance A positive or negative integer specifying the distance to

move the mark. The default value
is 1.

mark-backward-p [Function]

Syntax mark-backward-p buffer-mark

Description The mark-backward-p function returns t if buffer-mark is a backward
mark; otherwise, it returns nil.

Argument buffer-mark A buffer mark.

same-buffer-p [Function]

Syntax same-buffer-p buffer-mark1 buffer-mark2

Description The same-buffer-p function returns t if buffer-mark1 and buffer-mark2
are buffer marks pointing to the same buffer.

Arguments buffer-mark1 A buffer mark.
buffer-mark2 Another buffer mark.

make-buffer [Function]

Syntax make-buffer &key :chunk-size :read-only :font

Description The make-buffer function returns a buffer mark representing a new,
empty buffer.

Arguments :chunk-size The length of each string making up a buffer, which is
implemented as a linked list of strings. The default is
#x1000 (4096) for a fred-window and 128 for a fred-
dialog-item. (The generic function fred-chunk-
size returns the actual length.)
458 Macintosh Common Lisp Reference

:read-only The read/write status of the buffer, specifying whether
information in the buffer can be modified. If the value of
:read-only is true, any attempt to modify the buffer
will cause an error to be signaled. The default value is
nil.

:font The display font for characters typed into the buffer. The
default is the value of *fred-default-font-spec*.

Example
? (setq my-buffer (make-buffer))

#<BUFFER-MARK 0/0>

buffer-size [Function]

Syntax buffer-size buffer-mark

Description The buffer-size function returns the number of characters in buffer-
mark.

Argument buffer-mark A buffer mark.

Example

Here is an example of the use of buffer-size. (The generic function
fred-buffer returns the insertion point associated with a Fred
window; it is documented on page 489.)
? (setf my-window (make-instance 'fred-window))

#<FRED-WINDOW "New" #x4E15D9>

? (buffer-size (fred-buffer my-window))

0

buffer-modcnt [Function]

Syntax buffer-modcnt buffer-mark

Description The buffer-modcnt function returns the modification count of buffer-
mark. The modification count is the number of times the buffer has been
modified since it was created. By comparing the value returned by
buffer-modcnt at different times, you can tell whether the buffer has
been modified in the meantime.

Argument buffer-mark A buffer mark.

Example
Chapter 15 Programming the Editor 459

This code shows how you might use buffer-modcnt to determine
whether a buffer has been modified.
 (let ((start-count (buffer-modcnt buffer-mark)))
 (maybe-do-something buffer-mark)
 (unless (eql (buffer-modcnt buffer-mark) start-count)
 (princ "Did something!")))

buffer-plist [Function]

Syntax buffer-plist buffer-mark

Description The buffer-plist function returns the property list of the buffer
containing buffer-mark. The system itself keeps certain information on
buffer property lists, so you should not use setf with buffer-plist.

At present, Macintosh Common Lisp uses the buffer’s property list for nothing
except storing the value of fred-package.

Argument buffer-mark A buffer mark.

Example
? (buffer-plist my-buffer)

NIL

buffer-getprop [Function]

Syntax buffer-getprop buffer-mark key &optional default

Description The buffer-getprop function looks up the key property on the property
list (buffer-plist buffer-mark). It returns the value associated with key,
if found; otherwise, it returns default.

Arguments buffer-mark A buffer mark.
key A property on the property list associated with buffer-

mark.
default The default value to be returned.

Example

See the example under buffer-putprop.
460 Macintosh Common Lisp Reference

buffer-putprop [Function]

Syntax buffer-putprop buffer-mark key value

Description The buffer-putprop function gives key the value value on the property
list (buffer-plist buffer-mark). The value value is returned.

Arguments buffer-mark A buffer mark.
key The key to set in the property list.
value The new value to associate with key.

Example
? (buffer-putprop my-buffer :font '("Times" 12))

("Times" 12)

? (buffer-getprop my-buffer :font)

("Times" 12)

? (buffer-plist my-buffer)

(:FONT ("Times" 12))

buffer-position [Function]

Syntax buffer-position buffer-mark &optional position

Description The buffer-position function returns the position (number of
characters from the start of buffer-mark) of position in buffer-mark. If position
is nil (the default) or not supplied, the value of (buffer-position
buffer-mark) is returned. If position is an integer, buffer-mark checks that
position is in the range of legal buffer positions, then returns position. If
position is a mark in the same buffer as buffer-mark, its position is returned.
Otherwise, an error is signaled.

Arguments buffer-mark A buffer mark.
position A position in a buffer. It can be an integer offset from the

beginning of the buffer, a mark, or t, meaning the end of
the buffer. Its default value is (buffer-position
buffer-mark).

buffer-line [Function]

Syntax buffer-line buffer-mark &optional position

Description The buffer-line function returns the line number of buffer-mark that
contains position.
Chapter 15 Programming the Editor 461

Arguments buffer-mark A buffer mark.
position A position in a buffer. It can be an integer offset from the

beginning of the buffer or a mark in the same buffer as
buffer-mark. Its default value is (buffer-position
buffer-mark).

buffer-line-start [Function]

Syntax buffer-line-start buffer-mark &optional start count

Description The buffer-line-start function returns two values. If there are
enough lines in the buffer, buffer-line-start returns as the first
value the position of the start of the countth line from the line containing
start and, as the second value, nil. If there aren’t enough lines,
buffer-line-start returns as the first value the end of the range
searched (the start of the buffer if count is negative, the end of the buffer if
count is positive) and, as the second value, an integer specifying the
number of lines of shortfall.

Arguments buffer-mark A buffer mark.
start A position in a buffer. It can be an integer offset from the

beginning of the buffer or a mark in the same buffer as
buffer-mark.

count The number of lines from start to search. A count of 0
means the start of the line containing start, a count of –1
means the start of the previous line, a count of 1 means the
start of the next line, and so on. The default value is 0.

buffer-line-end [Function]

Syntax buffer-line-end buffer-mark &optional end count

Description The buffer-line-end function returns two values. If there are enough
lines in the buffer, buffer-line-end returns, as the first value, the
position of the start of the countth line from the line containing end and, as
the second value, nil. If there aren’t enough lines, buffer-line-end
returns the end of the range searched (the start of the buffer if count is
negative, the end of the buffer if count is positive) and a second value
specifying the number of lines of shortfall.

Arguments buffer-mark A buffer mark.
end A position in a buffer. It can be an integer offset from the

beginning of the buffer or a mark in the same buffer as
buffer-mark.
462 Macintosh Common Lisp Reference

count The number of lines from end to search. A count of 0
means the end of the line containing end, a count of –1
means the end of the previous line, a count of 1 means the
end of the next line, and so on. The default value is 0.

buffer-column [Function]

Syntax buffer-column buffer-mark &optional position

Description The buffer-column function returns the number of characters between
position and the start of the line that contains position.

Arguments buffer-mark A buffer mark.
position A position in a buffer. It can be an integer offset from the

beginning of the buffer or a mark in the same buffer as
buffer-mark. Its default value is (buffer-position
buffer-mark).

lines-in-buffer [Function]

Syntax lines-in-buffer buffer-mark

Description The lines-in-buffer function returns the number of lines in
the buffer.

This function works by counting the number of newline characters
in the buffer; therefore it takes longer to run as the buffer grows
in size.

Argument buffer-mark A buffer mark.

buffer-char [Function]

Syntax buffer-char buffer-mark &optional position

Description The buffer-char function returns the character at the specified position
in buffer-mark.

Arguments buffer-mark A buffer mark.
position A position in a buffer. It can be an integer offset from the

beginning of the buffer or a mark in the same buffer as
buffer-mark. Its default value is (buffer-position
buffer-mark).
Chapter 15 Programming the Editor 463

buffer-char-replace [Function]

Syntax buffer-char-replace buffer-mark char &optional position

Description The buffer-char-replace function replaces the character at the
specified position in buffer-mark with char. It returns the old character.

Arguments buffer-mark A buffer mark.
char A character to insert in the buffer.
position A position in a buffer. It can be an integer offset from the

beginning of the buffer or a mark in the same buffer as
buffer-mark. Its default value is (buffer-position
buffer-mark).

buffer-insert [Function]

Syntax buffer-insert buffer-mark string &optional position

Description The buffer-insert function inserts string into buffer-mark
at position.

Arguments buffer-mark A buffer mark.
string Anything acceptable to the string function: that is, a

string, symbol, or character.
position A position in a buffer. It can be an integer offset from the

beginning of the buffer or a mark in the same buffer as
buffer-mark. Its default value is (buffer-position
buffer-mark).

buffer-substring [Function]

Syntax buffer-substring buffer-mark one-end &optional other-end

Description The buffer-substring function returns a simple string of the
characters in buffer-mark in the range described by the arguments.

The order of the -end arguments doesn’t matter; they are interpreted in
whatever order produces a meaningful result.

Arguments buffer-mark A buffer mark.
one-end One end of the string to be returned.
other-end The other end of the string. The default value is the

position of buffer-mark.
464 Macintosh Common Lisp Reference

buffer-insert-substring [Function]

Syntax buffer-insert-substring buffer-mark string &optional start
end position

Description The buffer-insert-substring function inserts the substring of string
specified by start and end into buffer-mark at position.

Arguments buffer-mark A buffer mark.
string Anything acceptable to the string function: that is, a

string, symbol, or character.
start The starting position. The default value is 0.
end The ending position. The default value is (length

string).
position An integer position, or a mark in the same buffer as buffer-

mark. The default value is (buffer-position buffer-
mark).

buffer-insert-with-style [Function]

Syntax buffer-insert-with-style buffer-mark string style &optional
start

Description The buffer-insert-with-style function inserts string in buffer-mark.
If style is given, the function sets the style of buffer-mark to style, beginning
at start.

Arguments buffer-mark A buffer mark.
string Anything acceptable to the string function: that is, a

string, symbol, or character.
style A font style.
start The starting position. The default value is the position of

buffer-mark.

buffer-current-sexp [Function]

Syntax buffer-current-sexp buffer-mark &optional position

Description The buffer-current-sexp function returns two values. The first is the
s-expression in buffer-mark at position. Because this function actually reads
the characters from the buffer, you may evaluate what it returns. It returns
nil if there is no s-expression at position.
Chapter 15 Programming the Editor 465

The second value returned is t if an s-expression was found at position, or nil
if no s-expression was found at position.

Arguments buffer-mark A buffer mark.
position An integer position, or a mark in the same buffer as buffer-

mark. The default value is (buffer-position buffer-
mark).

The definition of the current s-expression is determined according to
the following rules:

■ If position precedes an open parenthesis, the current s-expression is the
text between that open parenthesis and its matching close parenthesis.

position(......current s-expression.......)

■ If position follows a close parenthesis, the current s-expression is the
text between that close parenthesis and its matching open parenthesis.

(......current s-expression.......)position

■ If position precedes a quotation mark (that is, double quotes), the
current
s-expression is the text between that quotation mark and its matching
quotation mark.

position "......current s-expression......."

■ If position follows a quotation mark, the current s-expression is the text
between that quotation mark and its matching quotation mark.

"......current s-expression......." position

■ If position is immediately before, immediately after, or in the middle of
a symbol, the current s-expression is the symbol.

■ Otherwise there is no current s-expression.

buffer-current-sexp-start [Function]

Syntax buffer-current-sexp-start buffer-mark &optional position

Description The buffer-current-sexp-start function returns the position of the
current s-expression, or nil if there is no current s-expression. The current
s-expression is determined according to the rules described in the
definition of buffer-current-sexp.

Arguments buffer-mark A buffer mark.
position An integer position, or a mark in the same buffer as buffer-

mark. The default value is (buffer-position buffer-
mark).
466 Macintosh Common Lisp Reference

buffer-current-sexp-bounds [Function]

Syntax buffer-current-sexp-bounds buffer-mark &optional position

Description The buffer-current-sexp-bounds function returns the starting and
ending positions of the current s-expression; if there is no current s-
expression, it returns nil. The current s-expression is determined
according to the rules given for the function buffer-current-sexp
earlier in this section.

Arguments buffer-mark A buffer mark.
position An integer position, or a mark in the same buffer as buffer-

mark. The default value is (buffer-position buffer-
mark).

buffer-delete [Function]

Syntax buffer-delete buffer-mark start &optional end

Description The buffer-delete function deletes the characters in buffer-mark in the
range described by the start and end arguments.

Arguments buffer-mark A buffer mark.
start The start of the range to delete.
end The end of the range to delete. The default value is

(buffer-position buffer-mark).

buffer-downcase-region [Function]

buffer-upcase-region [Function]

buffer-capitalize-region [Function]

Syntax buffer-downcase-region buffer-mark start &optional end
buffer-upcase-region buffer-mark start &optional end
buffer-capitalize-region buffer-mark start &optional end

Description These three functions convert the words between start and end to
lowercase, uppercase, and initial capitals, respectively.

Arguments buffer-mark A buffer mark.
start The start of the region to convert, expressed as an integer

or buffer mark.
Chapter 15 Programming the Editor 467

end The end of the region to convert, expressed as an integer
or buffer mark. The default value is (buffer-position
buffer-mark).

buffer-char-pos [Function]

buffer-not-char-pos [Function]

Syntax buffer-char-pos buffer-mark char-or-string &key :start :end
:from-end

buffer-not-char-pos buffer-mark char-or-string &key :start
:end :from-end

Description The buffer-char-pos function returns the position of the first
occurrence of a character that is an element of char-or-string in the buffer
between :start and :end. An error is signaled if :start is not less than
:end. The char-or-string argument may be a string or a character. The
search is case insensitive; that is, the comparison is done using char-
equal.

The buffer-not-char-pos function performs the same function, except
that it returns the position of the first character in the buffer that is not an
element of char-or-string.

Arguments buffer-mark A buffer mark.
char-or-string A character or string of characters. The string is treated as

a set of characters.
:start The first position in the buffer to search. The default value

is the cursor position.
:end The last position in the buffer to search. The default value

is 0 if :from-end is true or the buffer size if from-end is
false.

:from-end A value determining in which direction the search
proceeds. If :from-end is true, the search proceeds from
:end to :start. The default value is nil.

buffer-string-pos [Function]

Syntax buffer-string-pos buffer-mark string &key :start :end
:from-end
468 Macintosh Common Lisp Reference

Description The buffer-string-pos function returns the position of the first
occurrence of string in the buffer between :start and :end. An error is
signaled if :start is not less than :end. If :from-end is non-nil, the
search proceeds backward. If string is not found, nil is returned;
otherwise, the position of the first character of the string is returned. The
search is case insensitive; that is, the comparison is done using char-
equal.

Arguments buffer-mark A buffer mark.
string A string.
:start The first position in the buffer to search. The default value

is the cursor position.
:end The last position in the buffer to search. The default is 0 if

from-end is true or the buffer size if from-end is false.
:from-end A value determining in which direction the search

proceeds. If :from-end is true, the search proceeds from
:end to :start. The default is nil.

buffer-substring-p [Function]

Syntax buffer-substring-p buffer-mark char-or-string &optional
position

Description The buffer-substring-p function returns t if char-or-string appears at
the specified position in buffer-mark. The comparison is case insensitive.
The char-or-string argument may be a string or a character.

Arguments buffer-mark A buffer mark.
char-or-string A character or string of characters.
position A position in the buffer. The default value is the position

of buffer-mark.

buffer-word-bounds [Function]

Syntax buffer-word-bounds buffer-mark &optional position

Description The buffer-word-bounds function returns two values, the start and
end of the word at position. If position is not in a word, both values are equal
to (buffer-position buffer-mark position).

Arguments buffer-mark A buffer mark.
position A position in the buffer. The default value is the position

of buffer-mark.
Chapter 15 Programming the Editor 469

buffer-fwd-sexp [Function]

Syntax buffer-fwd-sexp buffer-mark &optional position end character
ignore-#-comments

Description The buffer-fwd-sexp function returns the position of the end of the s-
expression starting at position. If the s-expression is not closed, the function
returns nil.

Arguments buffer-mark A buffer mark.
position A position in the buffer. The default value is the position

of buffer-mark.
end The last position in the buffer to search. The default value

is (buffer-size buffer-mark).
character A character. The value defaults to (buffer-char buffer-

mark position).
ignore-#-comments

A value that determines whether to ignore initial sharp-
sign (number-sign) comments. If the value of this is true,
initial sharp-sign comments are skipped; if nil, the end
of an initial sharp-sign comment is returned.

buffer-bwd-sexp [Function]

Syntax buffer-bwd-sexp buffer-mark &optional position over-sharps

Description The buffer-bwd-sexp function returns the position of the start of the s-
expression ending at position, the value of which defaults to (buffer-
position buffer-mark). If the s-expression is not closed, the function
returns (max 0 (1- position)).

Arguments buffer-mark A buffer mark.
position A position in the buffer. The default value is the position

of buffer-mark.
over-sharps An argument specifying whether to consider a preceding

reader macro, such as #@, as part of the s-expression. If the
value of this is true, reader macros are included; if nil,
they are not.

buffer-skip-fwd-wsp&comments [Function]

Syntax buffer-skip-fwd-wsp&comments buffer-mark start end
470 Macintosh Common Lisp Reference

Description The buffer-skip-fwd-wsp&comments function returns the first
position in buffer-mark after start that is not white space or within a
comment.

If start is not less than end, nil is returned.

Arguments buffer-mark A buffer mark.
start The first position in the buffer to search.
end The last position in the buffer to search.

buffer-insert-file [Function]

Syntax buffer-insert-file buffer-mark pathname &optional position

Description The buffer-insert-file function inserts the file specified by pathname
into buffer-mark at position.

This function preserves and restores font information; for additional
information, see “Using multiple fonts” on page 472.

Arguments buffer-mark A buffer mark.
pathname The pathname of the file to insert.
position A position in the buffer. The default is buffer-

position buffer-mark).

buffer-write-file [Function]

Syntax buffer-write-file buffer-mark pathname &key :if-exists

Description The buffer-write-file function outputs the contents of the buffer to
the file specified by pathname.

This function preserves and restores font information; for additional
information, see “Using multiple fonts” on page 472.

Arguments buffer-mark A buffer mark.
pathname The pathname of the file to insert.
:if-exists A keyword that specifies what to do if the file already

exists. If the value of : if-exists is :error, an error is
signaled. If it is :supersede, the file is deleted and a new
file is written. If it is :overwrite and the file is
unlocked, the data fork of the existing file is replaced with
the contents of the buffer and the resource fork is
modified by the font information for the buffer. If the file
is locked, an error is signaled.
Chapter 15 Programming the Editor 471

Using multiple fonts

Fred supports a multiple font capability, as described in Chapter 1:
Editing in Macintosh Common Lisp In addition, you can use functions
to manipulate fonts in buffers.

Font-spec information is stored with each buffer. Each character in the
buffer is associated with a font spec. (Note that the font information is
actually stored as a series of ranges in the buffer; a separate font spec is
not stored for each character.) In addition, two global font specifications
exist for each buffer; one is the font to use in an empty buffer and the
other is the font to use for the next insertion.

Global font specifications

Various functions set the empty buffer font. An insertion into an empty
buffer when the font is unspecified is in the empty buffer font. The
empty buffer font defaults to *fred-default-font-spec*.

Various functions set the next insertion font. However, if it is not set, the
font for an insertion into a non-empty buffer depends on whether a
character precedes the insertion point and is on the same line as the
insertion point. In this case, the insertion font is the same font as the
preceding character. When the insertion begins on a new line or at the
beginning of the buffer, the insertion font is the same font as the
following character. This behavior is called the font neighbor rule.

The font neighbor rule determines the font to use for a buffer insertion
operation (e.g., buffer-insert and buffer-insert-substring).
However, if a function has previously set the next insertion font to a
non-nil value, that value overrides the font neighbor rule.

In addition to the functions described here, buffer-write-file and
buffer-insert-file preserve and restore font information in a
'FRED' resource.

◆ Note: if you use another text editor to edit a file, font information may
become misaligned with the text.
472 Macintosh Common Lisp Reference

Style vectors

Programming with multiple fonts introduces a new data structure, a
style vector. A style vector can be applied to a series of characters in a
buffer. For instance, you can use a style vector to specify that the first 10
characters after a specified position should be displayed in 12-point
New York bold, the next 20 characters in 9-point Monaco, and the
following 10 characters in 12-point Chicago outline. Style vectors do not
automatically take note of their position: when you apply one, you have
to specify a position using a buffer mark.

Functions for manipulating fonts and font styles

Use the following functions to manipulate fonts, font-codes, and font
styles in buffers.

buffer-char-font-spec [Function]

Syntax buffer-char-font-spec buffer-mark &optional position

Description The buffer-char-font-spec function returns the font spec of the
character at position in buffer-mark.

Arguments buffer-mark A buffer mark.
position A position in the buffer. The default is (buffer-

position buffer-mark).

buffer-current-font-spec [Function]

Syntax buffer-current-font-spec buffer-mark

Description The buffer-current-font-spec function returns the current font
spec of buffer-mark. Any text added to the buffer is in this font.

Argument buffer-mark A buffer mark.

buffer-set-font-spec [Function]

Syntax buffer-set-font-spec buffer-mark font-spec &optional start
end
Chapter 15 Programming the Editor 473

Description The buffer-set-font-spec function sets the font spec of buffer-mark.
If start is not given, buffer-set-font-spec sets the insertion font. Font
specifications always merge with the current font.

Arguments buffer-mark A buffer mark.
font-spec A font spec.
start The start of the range in the buffer. This can be a mark or

a number. The default is (buffer-position buffer-
mark).

end The end of the range in the buffer. The default is the end
of the buffer.

buffer-replace-font-spec [Function]

Syntax buffer-replace-font-spec buffer-mark old-spec new-spec

Description The buffer-replace-font-spec function replaces the font specified
by old-spec with the one specified by new-spec in the entire buffer and
returns the font’s index in the buffer’s font list. If the font specified by old-
spec is not in the buffer’s font list, the function does nothing and returns
nil.

Arguments buffer-mark A buffer mark.
old-spec A font specification.
new-spec A font specification.

Example

This function could be written as follows:
? (defun buffer-replace-font-spec (buf old-spec new-spec)

 (multiple-value-bind (old-ff old-ms) (font-codes old-spec)

 (multiple-value-bind (new-ff new-ms)

 (font-codes new-spec old-ff old-ms)

 (buffer-replace-font-codes buf

 old-ff old-ms new-ff new-ms))))

buffer-font-codes [Function]

Syntax buffer-font-codes buffer
474 Macintosh Common Lisp Reference

Description The function buffer-font-codes returns a font/face code and a
mode/size code. If the font codes for the next insertion are set, the font/
face code and the mode/size code for the next insertion are returned;
otherwise, the font neighbor rule determines the font/face code and the
mode/size code returned.

Arguments buffer A Fred buffer.

Example
? (setf my-window (make-instance 'fred-window))

#<FRED-WINDOW "New" #x6FBCE1>

? (buffer-font-codes (fred-buffer my-window))

262144

65545

buffer-set-font-codes [Function]

Syntax buffer-set-font-codes buffer ff ms &optional start end

Description The buffer-set-font-codes function sets the font for buffer. If start is
not nil, this function changes the font in the buffer between start and end.
If start is nil and the buffer is empty, this function sets the font for the
empty buffer. If start or end is nil, unspecified, or both have the same
value, and the buffer is not empty, this function sets the font for the next
insertion.

If either ff or ms is nil, this function clears the next insertion font and the
font neighbor rule determines the font for the next insertion.

Arguments buffer A Fred buffer.
ff A font/face code. A font/face code is a 32-bit integer that

combines the font's name and its face (e.g., plain, bold,
italic). For more information see “Functions related to
font codes” on page 80.

ms A mode/size code. A mode/size code is a 32-bit integer
that indicates the font mode (e.g., inclusive-or, exclusive-
or, complemented) and the font size.

start The initial position changed in the buffer. This is a buffer
mark, an integer, or nil. The default is nil.

end The final position changed in the buffer. This is a buffer
mark, an integer, or nil. The default is nil.

Example
? (defvar my-window)

MY-WINDOW

? (setf my-window (make-instance 'fred-window))
Chapter 15 Programming the Editor 475

#<FRED-WINDOW "New" #x6FAC81>

? (multiple-value-bind (ff ms) (font-codes '("courier" 12
:plain))

(buffer-set-font-codes (fred-buffer my-window) ff ms))

NIL

buffer-replace-font-codes [Function]

Syntax buffer-replace-font-codes buffer-mark old-ff old-ms new-ff
new-ms

Description The buffer-replace-font-codes function replaces the font specified
by old-ff and old-ms with the one specified by new-ff and new-ms in the
owning buffer of buffer-mark and returns the font’s index in the buffer’s
font list. If the font specified by old-ff and old-ms does not exist in the buffer,
the function does nothing and returns nil.

Arguments buffer-mark A buffer mark.
old-ff The old font/face code.
new-ff The new font/face code.
old-ms The old mode/size code.
new-ms The new mode/size code.

buffer-remove-unused-fonts [Function]

Syntax buffer-remove-unused-fonts buffer-mark

Description The buffer-remove-unused-fonts function removes unused fonts
from the buffer associated with buffer-mark.

Argument buffer-mark A buffer mark.

buffer-get-style [Function]

Syntax buffer-get-style buffer-mark &optional start end

Description The buffer-get-style function returns a style vector corresponding to
the fonts, sizes, and styles used in the specified range in the buffer.

Arguments buffer-mark A buffer mark.
476 Macintosh Common Lisp Reference

start The start of the range in the buffer. This can be a mark or
a number. The default is (buffer-position buffer-
mark).

end The end of the range in the buffer. The default is the end
of the buffer.

buffer-set-style [Function]

Syntax buffer-set-style buffer-mark style-vector start-position

Description The buffer-set-style function sets the styles used in buffer-mark,
beginning at start-position, according to style-vector.

Arguments buffer-mark A buffer mark.
style-vector A style vector.
start-position The beginning position in the buffer at which to insert the

styles. The default is (buffer-position buffer-mark).

buffer-next-font-change [Function]

Syntax buffer-next-font-change buffer-mark &optional position

Description The buffer-next-font-change function scans the buffer of buffer-
mark for the first font change following position and returns the position of
the change. If there are no changes following position, nil is returned.

Arguments buffer-mark A buffer mark.
position A position in the buffer. The default is (buffer-

position buffer-mark).

buffer-previous-font-change [Function]

Syntax buffer-previous-font-change buffer-mark &optional
position

Description The buffer-previous-font-change function scans the buffer of
buffer-mark for the first font change before position and returns the position
of the change. If there are no changes before position, nil is returned.

Arguments buffer-mark A buffer mark.
position A position in the buffer. The default is (buffer-

position buffer-mark).
Chapter 15 Programming the Editor 477

Fred classes

fred-mixin and its subclasses fred-item and fred-dialog-item
provide the basic Fred display and editing behavior. fred-window
and scrolling-fred-view are classes of views which contain
fred-items.

fred-mixin [Class name]

Description The fred-mixin class defines the basic Fred display and editing
behavior. It is a superclass of both fred-item and fred-dialog-item;
it has no instances of its own.

This class does not have a method for initialize-instance. It adds the
following initialization arguments used by its subclasses:

:comtab The command table to use with the buffer. The default is
the value of *comtab*.

:copy-styles-p
An argument that determines whether to copy styles
when copying. The default value is nil.

:history-length
The number of Fred commands that are remembered.
Only commands that actually change text are
remembered. The default value for Fred windows and
Fred dialog items is *fred-history-length*; for the
Listener, it is *listener-history-length*.

fred-item [Class name]

Description A fred-item is a subclass of fred-mixin and key-handler-mixin.
The buffer area in a scrolling-fred-view is a fred-item.

 In addition to the fred-mixin and key-handler-mixin initargs,
fred-item has the following initial argument:

 :part-color-list
A list of color specs. The initial value form is nil. The
accessor is part-color-list.
478 Macintosh Common Lisp Reference

window-fred-item [Class name]

Description A window-fred-item is a subclass of fred-item. The fred-update
method for this class updates the window title and the window's change
mark. Each scrolling-fred-view in a Fred window uses this class,
with the exception of the mini-buffer.

fred-dialog-item [Class name]

Description The fred-dialog-item class is the class of Fred dialog items. This class
is based on fred-mixin and basic-editable-text-dialog-item
(internal to :CCL).

Like any other dialog item, a fred-dialog-item can be the subview of any
view.

initialize-instance [Generic function]

Syntax initialize-instance (item fred-dialog-item) &rest
initargs

Description The initialize-instance primary method for fred-dialog-item
initializes a Fred dialog item so that it can be used. (When instances are
actually made, the function used is make-instance, which calls
initialize-instance.)

Arguments item A Fred dialog item.
initargs A list of arguments used to initialize the Fred dialog item.

The following initialization arguments are available:
:view-container

The item’s container. This value is set by set-view-
container. Its initial value is nil.

:view-font
The font in which text in the item appears. The default is
("Chicago" 12 :PLAIN).

:view-position
The position in the dialog box where the item will be
placed, in the local view coordinates. If this argument is
not specified, the first available position large enough to
hold the item is used. If no space is large enough, the
dialog item is placed in the upper-left corner of the dialog.
The default value is nil.
Chapter 15 Programming the Editor 479

:view-size
The size of the Fred dialog item. If not specified, this value
is calculated so that the item fits in the view. If the
specified value is too small, the item is clipped when it is
drawn. The default value is nil.

:view-nick-name
The nickname of the Fred dialog item. This feature is used
in conjunction with view-named. The default value is
nil.

:allow-returns
An argument specifying whether to allow returns to be
typed into the item. If :allow-returns is nil (the
default), pressing the Return key while this item is the
window’s current key handler will invoke the window’s
default button, if it has one. A Return character can be
inserted by pressing Shift-Return. This value is checked
by the accessor allow-returns-p and changed by
set-allow-returns.

:allow-tabs
An argument specifying whether to allow tabs in the
buffer. If :allow-tabs is nil (the default), pressing the
Tab key while this item is the window’s current key
handler will select the next key handler. For example,
pressing Tab in an editable text field will move the cursor
to the next editable text field. A Tab character can be
inserted by pressing Shift-Tab. This value is checked by
the accessor allow-tabs-p and changed by set-
allow-tabs.

:copy-styles-p
An argument specifying whether to copy styles when
copying. The default value is nil.

:dialog-item-text
The default text to insert in the buffer. The default value
is "", the empty string.

:dialog-item-enabled-p
An argument specifying whether the dialog item is
enabled; the default value is true.

:part-color-list
A list of colors to which the parts of the Fred dialog item
should be set. The default value is nil.The three possible
keywords are :frame, the outline of the Fred dialog item;
:text, its text; and :body, its body.

:draw-outline
An argument specifying whether a boxed outline appears
around the editable text. The default value is true.
480 Macintosh Common Lisp Reference

:buffer-chunk-size
The chunk size of the buffer. A buffer is conceptually a
linked list of strings; the chunk size is the length of each
of these strings. The default value for Fred dialog items is
128.

:text-edit-sel-p
An argument specifying whether text can be selected. The
default value is true.

:comtab The command table to use with the buffer. The default is
the value of *comtab*.

:line-right-p
A value that indicates the direction that a line of text is
printed in the buffer. The trap #_GETSysJust
determines the default value for :line-right-p. If the
value is nil, the text direction is left to right. If the value
is true, the text direction is right to left. The accessor for
:line-right-p is fred-line-right-p.

:word-wrap-p
A value that indicates whether a line wraps on word
boundaries. The default is nil. The accessor for :word-
wrap-p is fred-word-wrap-p.

:justification
A value that indicates text alignment. The value is either
:left, :right, or :center. If :line-right-p is nil,
the default is :left; if :line-right-p is true, the
default is :right. The accessor for :justification is
fred-justification.

fred-window [Class name]

Description The fred-window class is the class of Fred windows, based on fred-
mixin and window.

initialize-instance [Generic function]

Syntax initialize-instance (window fred-window) &rest initargs

Description The initialize-instance primary method for fred-window
initializes a Fred window so that it can be used. (When instances are
actually made, the function used is make-instance, which calls
initialize-instance.)

Arguments fred-window A Fred window.
Chapter 15 Programming the Editor 481

initargs A list of arguments used to initialize the Fred window.
The following initialization arguments are available:

:view-container
The view’s container. This value is set by set-view-
container. Its initial value is nil.

:view-font
The font specification used by the view. The default is
("Geneva" 0 :PLAIN).

:view-scroll-position
The initial scroll position of the view. This position
corresponds to the origin in a Macintosh GrafPort. The
default value is #@(0 0).

:view-position
A point, keyword, or list giving the initial position of the
window. The default position is #@(6 44).

:view-size
A point giving the initial size of the window. The default
is #@(502 150).

:view-nick-name
The nickname of the view. The default value is nil.

:filename
The name of the file to appear in the window. The default
value is nil. If the file does not exist, an error is signaled.

:wrap-p An argument specifying whether text wraps in the
window. The default value is nil.

:view-subviews
A list of subviews. Fred windows do not normally contain
subviews.

:window-title
A string specifying the title of the window. The title of a
Fred window is computed from the pathname of the file
displayed in it, if there is one; a window that is not
displaying a file’s contents has the title New.

:window-show
An argument determining whether a window is shown
when it is created. If this argument is true (the default), a
window is shown when it is created. If nil, the window
is created invisibly.

:window-layer
An integer describing the layer in which the new window
will be created. By default this is 0 (the front window). For
details, see set-window-layer, defined on page 172.”

:color-p An argument specifying whether the window is a color
window. If nil (the default), the window is based on the
Macintosh window type. If non-nil, the window is a
color window.
482 Macintosh Common Lisp Reference

:window-type
A keyword describing the type of window to be created.
The default is :document-with-zoom. This argument
should be one of the following keywords:
:document
:document-with-grow
:document-with-zoom
:double-edge-box
:single-edge-box
:shadow-edge-box
:tool

:copy-styles-p
An argument specifying whether to copy styles when
copying. The default value is true.

:procid A number indicating the procID (window definition ID)
of the window to be created. This is an alternative to
specifying :window-type for programmers who want
to use WDEFs with nonstandard procIDs.

:comtab The command table to use for editing in the buffer.
:history-length

The number of commands retained in the edit history.
The default value is the value of *fred-history-
length*, which is initially 20.

:help-spec
A value describing the Balloon Help for the window. This
may be a string or one of a number of more complicated
specifications, which are documented in the file help-
manager.lisp in your Library folder. The default value
is nil.

:window-do-first-click
A Boolean value determining whether the click that
selects a window is also passed to window-click-
event-handler. Its default value is nil.

:close-box-p
A Boolean value determining whether the window will
have a close box. Close boxes aren’t available on all
windows.

:wptr For use by advanced programmers. An argument
determining whether a new window is created or
whether a previously existing window record is used. If
the argument is not specified, initialize-instance
calls #_NewWindow or #_NewCWindow. If the argument
is specified, it should be a pointer to a window record on
the Macintosh heap.
Chapter 15 Programming the Editor 483

:line-right-p
A value that indicates the direction that a line of text is
printed in the buffer. The trap #_GETSysJust
determines the default value for :line-right-p. If the
value is nil, the text direction is left to right. If the value
is true, the text direction is right to left. The accessor for
:line-right-p is fred-line-right-p.

:word-wrap-p
A value that indicates whether a line wraps on word
boundaries. The default is nil. The accessor for :word-
wrap-p is fred-word-wrap-p.

:justification
A value that indicates text alignment. The value is either
:left, :right, or :center. If :line-right-p is nil,
the default is :left; if :line-right-p is true, the
default is :right. The accessor for :justification is
fred-justification.

scrolling-fred-view [Class name]

Description A scrolling-fred-view is a view containing 0, 1, or 2 scroll bars and
a fred-item. Instances of this class are components of Fred windows
and of several dialogs displayed by the Tools menu.

A scrolling-fred-view is a subclass of fred-mixin . In addition to
the fred-mixin and key-handler-mixin initargs, the set of initial
arguments and values that initialize scrolling-fred-view are:

Initargs: :part-color-list
A list of color specs. The initial value form is nil. The
accessor is part-color-list.

:grow-box-p A boolean value that indicates whether the view leaves
space below the vertical scroll bar. The default is nil,
indicating that space is not left for a grow-box. The
accessor is grow-box-p.
This argument is useful for aesthetic purposes (e.g., when
the view size is the same as the window size).

:h-scroll-fraction
A value that indicates the size of the horizontal scroller as
a fraction of the view width. The value is either nil or an
integer. The accessor is h-scroll-fraction. An
integer n indicates a view width fraction of 1/n.
484 Macintosh Common Lisp Reference

:draw-scroller-outline
A boolean value that indicates whether an outline is
visible around the scroller. The default is true. The
accessor is draw-scroller-outline.

:h-scroll-class
The class for the horizontal scroller. The default value is
'fred-h-scroll-bar.

:v-scroll-class
The class for the vertical scroller. The default value is
'fred-v-scroll-bar.

:track-thumb-p
An argument specifying the scrolling behavior of the
view. If :track-thumb-p is true, the scroll box and view
contents move as the user drags the scroll box because
scroll-bar-changed is called. If :track-thumb-p is
nil, an outline of the scroll box moves during scrolling
and the scroll box and view contents move when the user
releases the mouse button. The default value is the value
of *fred-track-thumb-p*.

:h-scrollp A boolean value that specifies whether the scrolling-
fred-view has a horizontal scroll bar. The default is
true.

:v-scrollp A boolean value that specifies whether the scrolling-
fred-view has a vertical scroll bar. The default is true.

:bar-dragger
A value that determines whether the horizontal or
vertical boundary between two panes can be dragged.
The default is nil. A value of :vertical specifies that
the horizontal boundary between two panes can be
dragged; a value of :horizontal specifies that the
vertical boundary between two panes can be dragged.

:h-pane-splitter
A value that specifies whether there is a horizontal pane
splitter. A horizontal pane splitter resides on a horizontal
scroll bar and divides the width of a pane. This initial
argument is ignored if the argument :h-scrollp is nil.
If :h-pane-splitter is :left, the horizontal pane
splitter is located at the left of the view; if :h-pane-
splitter is :right or any other true value except
:left, the pane splitter is located at the right of the view.
The default value is nil.
Chapter 15 Programming the Editor 485

:v-pane-splitter
A value that specifies whether there is a vertical pane
splitter. A vertical pane splitter resides on a vertical scroll
bar and divides the height of a pane. This initial argument
is ignored if :v-scrollp is nil.
If :v-pane-splitter is :top, the vertical
pane splitter is located at the top of the view; if
:v-pane-splitter is :bottom or any other true value
except :top, the pane splitter is located at the bottom of
the view. The default value is nil.

:fred-item-class
The class for the view's fred-item. The default is
'fred-item.

Example

The following example adds a scrolling-fred-view to a window.

? (setf my-window (make-instance 'window

 :window-title "Window 1" :view-size #@(400 300)))

#<FRED-WINDOW "Window 1" #xBC0D09>

? (setf view-1 (make-instance 'scrolling-fred-view
:view-size #@(400 300) :h-pane-splitter :left :bar-dragger
:vertical))

#<SCROLLING-FRED-VIEW #xBEBF51>

? (add-subviews my-window view-1)

Fred functions

High-level functions of the editor are defined on fred-item and
fred-dialog-item through the class fred-mixin, which defines
the general behavior of Fred. In addition, Fred window and scrolling-
fred-view support many of the high-level operations through
delegation to their active fred-item.

In addition to the functions outlined in this section, many Fred
functions are associated with keystrokes. The names and actions of
these functions are given in Chapter 1: Editing in Macintosh Common
Lisp They take one argument, either fred-dialog-item, fred-
item or fred-window.
486 Macintosh Common Lisp Reference

fred [Function]

Syntax fred &optional pathname new-window

Description The fred function is a simpler way to create a Fred window. If pathname
is given, fred attempts to open the file with that pathname.

Arguments pathname A pathname, string, or stream associated with a file. If the
file specified by pathname does not exist, Macintosh
Common Lisp signals an error. If pathname is not given,
Fred creates an empty Fred window.

new-window A Boolean value. If this value is t, Macintosh Common
Lisp opens a new window, even if another window is
already open to the specified file. Otherwise, Macintosh
Common Lisp asks whether to open a new window or
select the old one.

view-mini-buffer [Generic function]

Syntax view-mini-buffer (view fred-mixin)

Description The view-mini-buffer generic function returns the minibuffer
associated with view.

Argument view A Fred window or Fred dialog item.

Example
? (view-mini-buffer (make-instance 'fred-dialog-item))

#<MINI-BUFFER #x3AAF49>

window-key-handler [Generic function]

Syntax window-key-handler (view fred-window)

Description The window-key-handler generic function returns the current key
handler of view, unless the current key handler is the mini-buffer, in which
case this function returns a key handler that is not the mini-buffer.

Arguments view A fred-window.
Chapter 15 Programming the Editor 487

fred-item [Generic function]

Syntax fred-item (view scrolling-fred-view)

Description The fred-item generic function returns the fred-item in view.

Arguments view A scrolling-fred-view.

h-scroller [Generic function]

Syntax h-scroller (view scrolling-fred-view)

Description The h-scroller generic function returns the horizontal scroller in a
scrolling-fred-view.

Arguments view A scrolling-fred-view.

v-scroller [Generic function]

Syntax v-scroller (view scrolling-fred-view)

Description The v-scroller generic function returns the vertical scroller in a
scrolling-fred-view.

Arguments view A scrolling-fred-view.

add-scroller [Generic function]

Syntax add-scroller (view scrolling-fred-view) direction &key pane-
splitter

Description The function add-scroller adds a scroller to a scrolling-fred-
view, if one does not exist in the specified direction.

Arguments view A scrolling-fred-view.
direction The keyword :vertical or :horizontal.
pane-splitter The :pane-splitter initial argument that specifies the

pane splitter position. If pane-splitter is nil, there is no
pane splitter. The default value is nil.
If the scroll bar is :vertical, a value of :top positions
the pane splitter above the scroll bar and any other non-
nil value positions the pane splitter below the scroll bar.
488 Macintosh Common Lisp Reference

If the scroll bar is :horizontal, a value of :left
positions the pane splitter to the left of the scroll bar and
any other non-nil value positions the pane splitter to the
right of the scroll bar.

remove-scroller [Generic function]

Syntax remove-scroller (view scrolling-fred-view) direction

Description The function remove-scroller removes a scroller from a scrolling-
fred-view, if one exists in the specified direction.

Arguments view A scrolling-fred-view.
direction The keyword :vertical or :horizontal.

fred-buffer [Generic function]

Syntax fred-buffer (view fred-mixin)

Description The fred-buffer generic function returns the buffer mark associated
with the insertion point of view. The window-null-event-handler or
key-handler-idle generic function displays the blinking vertical bar
wherever this mark is located (unless the mark is off the screen, in which
case no vertical bar is displayed).

Argument view A Fred window or Fred dialog item.

fred-line-right-p [Generic function]

Syntax fred-line-right-p (view fred-mixin)
fred-line-right-p (view fred-window)

Description The fred-line-right-p generic function returns a value that indicates
the printing direction of a line of text. If the value is nil, the text direction
is left to right. If the value is true, the text direction is right to left.

Arguments view A fred-window or fred-dialog-item.
Chapter 15 Programming the Editor 489

fred-word-wrap-p [Generic function]

Syntax fred-word-wrap-p (view fred-mixin)
fred-word-wrap-p (view fred-window)

Description The fred-word-wrap-p generic function returns a value that indicates
whether a line wraps on word boundaries. If the value is nil, lines do not
wrap on word boundaries. If the value is true, a line wraps on word
boundaries.

Arguments view A fred-window or fred-dialog-item.

fred-justification [Generic function]

Syntax fred-justification (view fred-mixin)
fred-justification (view fred-window)

Description The fred-justification generic function returns a value that
indicates text alignment. The value is either :left, :center, or :right
indicating left alignment, center alignment, or right alignment,
respectively.

Arguments view A fred-window or fred-dialog-item.

grow-box-p [Generic function]

Syntax grow-box-p (view scrolling-fred-view)

Description The grow-box-p generic function returns a boolean value that indicates
whether the view leaves space below the vertical scroll bar. If the value
returned is nil, there is no additional space below the vertical scroll bar;
if the value is true, there is additional space for a grow-box beneath the
vertical scroll bar.

Arguments view A scrolling-fred-view.

h-scroll-fraction [Generic function]

Syntax h-scroll-fraction (view scrolling-fred-view)
490 Macintosh Common Lisp Reference

Description The h-scroll-fraction generic function returns a value that indicates
the size of the horizontal scroller as a fraction of the view width. An
integer n indicates a view width fraction of 1/n.

Arguments view A scrolling-fred-view.

fred-autoscroll-h-p view [generic function]

fred-autoscroll-v-p view [generic function]

Syntax fred-autoscroll-h-p (view fred-mixin)
fred-autoscroll-v-p (view fred-mixin)

These generic functions are called indirectly by (view-click-
event-handler fred-mixin). They control whether the view will
be automatically scrolled when the mouse cursor goes outside of it. The
default methods return true. You can specialize this generic function on
subclasses of fred-mixin in order to change this behavior.

Arguments view A fred-mixin.

draw-scroller-outline [Generic function]

Syntax draw-scroller-outline (view scrolling-fred-view)

Description The draw-scroller-outline generic function returns a boolean value
that indicates whether an outline is visible around the scroller. If the value
returned is nil, there is not an outline around the scroller; if the value is
true, there is an outline around the scroller.

Arguments view A scrolling-fred-view.

fred-chunk-size [Generic function]

Syntax fred-chunk-size (view fred-mixin)

Description The fred-chunk-size generic function returns the chunk size of view,
that is, the size of each of the strings through which buffers are
implemented.

Argument view A Fred window or Fred dialog item.

Example
? (fred-chunk-size (fred))
Chapter 15 Programming the Editor 491

4096

fred-display-start-mark [Generic function]

Syntax fred-display-start-mark (view fred-mixin)

Description The fred-display-start-mark generic function returns the buffer
mark of the first character visible in the window. By moving this mark,
you affect which part of the buffer fred-update displays.

Note that after every Fred keyboard command, Fred attempts to make the
cursor visible on the screen, repositioning the fred-display-start-mark
if necessary. To disable this behavior for the duration of one Fred command,
set the variable *show-cursor-p* to nil.

Argument view A Fred window or Fred dialog item.

set-fred-display-start-mark [Generic function]

Syntax set-fred-display-start-mark (view fred-mixin) position
&optional no-drawing

Description The set-fred-display-start-mark generic function sets the buffer
mark of the first character drawn in the window to position. If the value of
no-drawing is nil (the default), the view is redrawn immediately.
Otherwise the view is invalidated and will be redrawn the next time an
event-dispatch occurs.

Arguments view A Fred window or Fred dialog item.
position A position in the window (a mark or a number).
no-drawing A Boolean value. The default value is nil.

show-cursor-p [Variable]

Description The *show-cursor-p* variable is bound to t by run-fred-command.
It determines whether the insertion point will be made visible by run-
fred-command after the command has been executed.

If the value of this variable is true, then the insertion point is made visible.

If the value of this variable is nil, then it is not made visible.

For further details, see “Fred dispatch sequence” on page 519.
492 Macintosh Common Lisp Reference

window-show-cursor [Generic function]

Syntax window-show-cursor (window fred-mixin) &optional
position scrolling

Description The window-show-cursor generic function performs an update on
view, scrolling if necessary in order to make position visible.

Arguments view A Fred window or Fred dialog item.
position A position to make visible in the window. The default is

the insertion point.
scrolling A Boolean value. If the value of scrolling is nil, no

scrolling is performed.

fred-blink-position [Generic function]

Syntax fred-blink-position (view fred-mixin)

Description The fred-blink-position generic function returns the position of the
parenthesis or quotation mark that matches a parenthesis or quotation
mark at the insertion point. If there is no matching character, fred-
blink-position returns nil.

Argument view A window.

fred-update [Generic function]

Syntax fred-update (view fred-mixin)

Description The fred-update generic function updates the display of view, using the
current values of the insertion point, default-position mark, selection
region, and the contents of the buffer.

Note that by default, after every Fred keyboard command, Fred attempts to
make the insertion point visible on the screen, repositioning the fred-
display-start-mark if necessary. To disable this behavior for the duration
of one Fred command, set the variable *show-cursor-p* to nil. Several
built-in Fred commands (those that do not change the insertion point) disable
this behavior.
Chapter 15 Programming the Editor 493

The fred-update function is called automatically in several situations: in
response to window update events from the Macintosh Window Manager,
which occur due to resizing or uncovering a portion of the window; after the
execution of every Fred keyboard command; in response to clicks in the
window; and in response to force-output calls to the dialog item (views
inherit from output streams).

If you modify the window or its buffer in any other context (for example, by
using a menu command or a function meant to be called directly by user code),
you must call fred-update explicitly. Otherwise, the changes you make will
not be visible on the screen.

Argument view A Fred window or Fred dialog item.

ed-insert-char [Generic function]

Syntax ed-insert-char (view fred-mixin) character

Description The ed-insert-char generic function inserts character into the text of
the Fred window or dialog item at the insertion point. The display is not
automatically updated.

Arguments view A Fred window or Fred dialog item.
character Any character.

ed-insert-with-style [Generic function]

Syntax ed-insert-with-style (view fred-mixin) string style
&optional position

Description The ed-insert-with-style generic function inserts string at position in
view. If the value of *paste-with-styles* is true, it applies style over
string. If the value of *paste-with-styles* is nil, it does not.;

When you write functions that cause text to be pasted, use
ed-insert-with-style to ensure consistency with the way Macintosh
Common Lisp handles styles.

Arguments view A Fred window or Fred dialog item.
string The string to insert in the buffer. This argument may also

be nil, in which case nothing is inserted.
style The style vector to map over the string after it is inserted

in the buffer. This argument may also be nil, in which
case the string is inserted in the current insertion font.

position A position in the window (a mark or a number). The
default is the window’s insertion point.
494 Macintosh Common Lisp Reference

fred-copy-styles-p [Generic function]

Syntax fred-copy-styles-p (view fred-mixin)

Description The fred-copy-styles-p generic function indicates whether or not
copy from view copies styles. The default value is nil, meaning that it
does not.

Argument view A Fred window or Fred dialog item.

fred-special-indent-alist [Variable]

Description The *fred-special-indent-alist* variable contains an association
list of symbols that Fred should indent specially. The car of each pair is
the symbol, and the cdr is the number of distinguished arguments when
the symbol is used as a function, macro, or special form.

ed-current-symbol [Function]

Syntax ed-current-symbol window &optional aux-find-symbol
start end

Description The ed-current-symbol function returns three values giving
information about the text currently selected. If no text is selected, ed-
current-symbol returns information on the text surrounding the
cursor.

The first value is a symbol if the cursor is in an interned symbol, or if the
selected text contains a symbol.

The second value is t if an interned symbol is found, or nil if an interned
symbol is not found.

The third value is the character immediately before the selected text or symbol,
or nil if the selection or symbol is at the start of the buffer.

This function attempts to locate the symbol in the package of window, or in the
current package if the window doesn’t have a package. It never has the effect
of interning a new symbol.

Arguments window A window.
Chapter 15 Programming the Editor 495

aux-find-symbol
A function that determines what symbol to return from
the currently selected text. (It can be used, for example, to
determine that the symbol is in the desired package.) It
should return either the name of a function or nil.

start The beginning of the range to look at.
end The end of the range to look at.

ed-current-sexp [Generic function]

Syntax ed-current-sexp (view fred-mixin) &optional position
dont-skip

Description The ed-current-sexp generic function returns two values. If there is a
current s-expression in view (that is, if there is an
s-expression next to the insertion point, or an s-expression at
position, or a selection), the function returns the s-expression
and t. If there is no current s-expression, the function returns
the two values nil and nil.

Arguments view A Fred window or Fred dialog item.
position A position in the window (a mark or a number). The

default is the window’s cursor position.
dont-skip An argument specifying whether to skip forward across

reader macros. If true, the function skips across reader
macros in deciding the current s-expression. If nil, it
does not.

fred-point-position [Generic function]

Syntax fred-point-position (view fred-mixin) h &optional v

Description The fred-point-position generic function returns the buffer position
of the character nearest to the point specified by h and v in the local
coordinates of the window containing the Fred dialog item. (See Chapter
2: Points and Fonts for a description of the point format.) This function
assumes that the buffer has not been modified since the last call to fred-
update.

Arguments view A Fred window or Fred dialog item.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

be an entire point in encoded form and is returned
unchanged.
496 Macintosh Common Lisp Reference

fred-hpos [Generic function]

Syntax fred-hpos (view fred-mixin) &optional position

Description The fred-hpos generic function returns the horizontal position of the
line containing position, in local window coordinates. The position is
computed as the length (in pixels) of the line containing position, minus the
amount of horizontal scrolling currently in effect in the window.

Arguments view A Fred window or Fred dialog item.
position An integer position, or a mark in the window’s buffer.

The default value is the window’s insertion point.

fred-vpos [Generic function]

Syntax fred-vpos (view fred-mixin) &optional position

Description The fred-vpos generic function returns the vertical position of the line
containing position, in local window coordinates. If position is not visible in
the window, -1 is returned.

Arguments view A Fred window or Fred dialog item.
position An integer position, or a mark in the window’s buffer.

The default value is the window’s insertion point.

fred-line-vpos [Generic function]

Syntax fred-line-vpos (view fred-mixin) line-number

Description The fred-line-vpos generic function returns the vertical position of
line-number in local window coordinates.

Arguments view A Fred window or Fred dialog item.
line-number A line number.

fred-hscroll [Generic function]

Syntax fred-hscroll (view fred-mixin)

Description The fred-hscroll generic function returns the value of the desired
amount of horizontal scroll in pixels in view.
Chapter 15 Programming the Editor 497

Argument view A Fred window or Fred dialog item.

set-fred-hscroll [Generic function]

Syntax set-fred-hscroll (view fred-mixin) hscroll

Description The set-fred-hscroll generic function sets the value of the horizontal
scroll in view to hscroll.

Arguments view A Fred window or Fred dialog item.
hscroll The desired amount of horizontal scroll in pixels.

selection-range [Generic function]

Syntax selection-range (view fred-mixin)

Description The selection-range generic function returns two values specifying
the beginning and end of the currently selected text. If no text is selected,
the function returns the insertion point as both values. You can use eql to
test whether text is currently selected. If the two values are eql, no text is
selected.

Text selected in the active window is highlighted.

Argument view A Fred window or Fred dialog item.

set-selection-range [Generic function]

Syntax set-selection-range (view fred-mixin) &optional position
cursorpos

Description The set-selection-range generic function sets the text currently
selected to the buffer range between position and cursorpos and updates the
window display. If position is equal to cursorpos, the selection range is
made empty.

See also select-all on page 507.

Arguments view A Fred window or Fred dialog item.
position An integer position, or a mark in the window’s buffer.
cursorpos A position in the window buffer, by default the insertion

point.
498 Macintosh Common Lisp Reference

collapse-selection [Generic function]

Syntax collapse-selection (view fred-mixin) forward-p

Description The collapse-selection generic function does nothing and returns
nil if no text is selected. Otherwise, it deselects the selected text and
returns t.

Arguments view A Fred window or Fred dialog item.
forward-p An argument specifying the direction in which the cursor

moves. If forward-p is t, the cursor moves forward to the
end of the selected text; if it is nil, the cursor moves
backward to the beginning of the selected text.

get-back-color [Generic function]

Syntax get-back-color (window fred-window)

Description The get-back-color generic function returns the background color of
window, encoded as an integer.

Argument window A Fred window.

get-fore-color [Generic function]

Syntax get-fore-color (window fred-window)

Description The get-fore-color generic function returns the foreground color of
window, encoded as an integer.

Argument window A Fred window.

view-font [Generic function]

Syntax view-font (view fred-mixin)

Description The view-font generic function returns three values: the font spec of the
current insertion font, the font spec of the character at the insertion point
(or the first character in the selection), and a Boolean value. The Boolean
value is t if the entire selection and the insertion font use the same font
spec; otherwise, the Boolean value is nil.
Chapter 15 Programming the Editor 499

Argument view A Fred window or Fred dialog item.

set-view-font [Generic function]

Syntax set-view-font (view fred-mixin) font-spec

Description If text is selected, the set-view-font generic function merges the font
specs of the characters in the selection with the given font-spec. If there are
multiple font specs in the selection, they are all merged individually. If no
text is selected, the current insertion font is merged with the given font-
spec, and the result is used as the new insertion font.

Fred does not automatically set the insertion font when you move the insertion
point. If the insertion font is ("Monaco" 9), typed characters appear in 9-
point Monaco, even if you place the insertion point between characters
displayed in Times Bold. When there is no selection, the insertion font must
always be changed explicitly by a call to set-view-font. This behavior may
change in future releases of Macintosh Common Lisp.

Arguments view A Fred window or Fred dialog item.
font-spec A font spec.

view-font-codes [Generic function]

Syntax view-font-codes (view fred-mixin)
view-font-codes (view fred-window)

Description The function view-font-codes returns a font/face code and a mode/
size code for the buffer associated with view. If the buffer is empty, the
function returns the empty buffer font. If the next insertion font was
specified, this function returns the next insertion font; otherwise, if there
is a selection, the font neighbor rule determines the font/face code and the
mode/size code returned, assuming the insertion point is at the first
character of the selection; if there is not a selection, this function returns
the font determined by the neighbor rule.

Arguments view An instance of fred-mixin or an instance of fred-
window.

Example
? (view-font-codes (window-key-handler my-window))

1441792

65548
500 Macintosh Common Lisp Reference

set-view-font-codes [Generic function]

Syntax set-view-font-codes (view fred-mixin) ff ms
set-view-font-codes (view fred-window) ff ms

Description The set-view-font-codes function sets the font for the buffer
associated with view. If the buffer is empty, this function sets the empty
buffer font. If the buffer is not empty, this function sets the next insertion
font. This function is similar to the function buffer-set-font-codes.
The difference is the specification of view rather than buffer.

If either ff or ms is nil, this function clears the next insertion font and the
font neighbor rule determines the font for the next insertion.

Arguments view An instance of fred-mixin or an instance of fred-
window.

ff A font/face code. A font/face code is a 32-bit integer that
combines the name of the font and its face (e.g., plain,
bold, italic). For more information see “Functions related
to font codes” on page 80.

ms A mode/size code. A mode/size code is a 32-bit integer
that indicates the font mode (e.g., inclusive-or, exclusive-
or, complemented) and the font size.

ed-set-view-font [Generic function]

Syntax ed-set-view-font (view fred-mixin) font-spec

Description The function ed-set-view-font modifies a font by applying a mask. If
view has a selection, this function merges the current font of each character
in the selection with font-spec. If view has no selection and the buffer is
empty, this function merges the empty buffer font with font-spec.

If the buffer is not empty and *last-command* is a font-setting
command, this function merges font-spec with the font specified by the
previous command; otherwise, this function merges font-spec with the next
insertion font. In either case, this function sets fred-last-command to
'(set-font new-ff new-ms).

Arguments view An instance of fred-mixin.
font-spec A font specification.

Example
? (ed-set-view-font (window-key-handler my-window) '(:bold))

(:BOLD)
Chapter 15 Programming the Editor 501

ed-view-font-codes [Generic function]

Syntax ed-view-font-codes (view fred-mixin)

Description The function ed-view-font-codes returns the font codes of the next
insertion font if *last-command* or fred-last-command specify a
font. Otherwise, this function behaves the same as the function view-
font-codes.

Arguments view An instance of fred-mixin.

window-set-not-modified [Generic function]

Syntax window-set-not-modified (view fred-mixin)

Description The window-set-not-modified generic function is called by the
window system when a Fred window is saved to a file. It sets the state of
the window to be not modified and calls fred-update.

Argument view A Fred window or Fred dialog item.

window-filename [Generic function]

Syntax window-filename (window fred-window)

Description The window-filename generic function returns the pathname of the file
associated with the Fred window. If no pathname is associated with the
window, window-filename returns nil.

Files become associated with Fred windows when set-window-filename is
called or if the window was created with an initialization argument for
:filename.

Argument window A Fred window.

set-window-filename [Generic function]

Syntax set-window-filename (window fred-window) new-name
502 Macintosh Common Lisp Reference

Description The set-window-filename generic function sets the filename
associated with the Fred window. When the window contents are saved,
they are saved to the new filename. If a file corresponding to the filename
already exists, it is overwritten without warning when the window is next
saved.

Arguments window A Fred window.
new-name A pathname or string giving the file to associate with the

window.

fred-package [Generic function]

Syntax fred-package (view fred-mixin)

Description The fred-package generic function returns the package associated with
the window containing the item or nil. If nil, the window’s package is
always the current value of *package*.

Argument view A Fred window or Fred dialog item.

set-fred-package [Generic function]

Syntax set-fred-package (view fred-mixin) package

Description The set-fred-package generic function sets the package associated
with the window containing the Fred dialog item. The package argument
may be a package, or it may be a string or symbol naming a package.

Arguments view A Fred window or Fred dialog item.
package A package indicator (that is, a string or a symbol naming

a package, or a package object).

fred-margin [Generic function]

Syntax fred-margin (view fred-mixin)

Description The fred-margin generic function returns the distance in pixels between
the left edge of view and the left edge of the first character on each line.

Argument view A Fred window or Fred dialog item.
Chapter 15 Programming the Editor 503

set-fred-margin [Generic function]

Syntax set-fred-margin (view fred-mixin) new-margin

Description The set-fred-margin generic function sets the distance in pixels
between the left edge of view and the left edge of the first character on each
line to new-margin.

Arguments view A Fred window or Fred dialog item.
new-margin A fixnum specifying the width of the margin in pixels. If

new-margin is not a fixnum, an error is signaled.

fred-tabcount [Generic function]

Syntax fred-tabcount (window fred-window)

Description The fred-tabcount generic function returns the number of spaces per
tab in window.

Argument window A Fred window.

fred-wrap-p [Generic function]

Syntax fred-wrap-p (window fred-mixin)

Description The fred-wrap-p generic function returns a Boolean value, t if lines
wrap in window, nil if they do not.

Argument window A Fred window.

Example

The following code defines a Fred command that toggles whether text
is wrapped in a window. The function ed-refresh-screen used in
this example is defined in the file assorted-fred-commands.lisp
in your MCL Examples folder.
(def-fred-command (:control :meta #\w)

 (lambda (w)

 (setf (fred-wrap-p w) (not (fred-wrap-p w)))

 (ed-refresh-screen w)))
504 Macintosh Common Lisp Reference

window-save [Generic function]

Syntax window-save (window fred-mixin)

Description The window-save generic function saves the window to its disk file. If
the window has no filename, window-save-as is called.

Argument window A Fred window.

window-save-as [Generic function]

Syntax window-save-as (window fred-mixin)

Description The window-save-as generic function calls the standard SfPutFile
dialog box, allowing the user to choose a directory and input a filename,
and saves the contents of the window to the filename.

Note that if the user clicks Cancel in this dialog box, Macintosh Common Lisp
throws to :cancel. User code may wish to perform a catch-cancel to
prevent a return to the top level. (The macro catch-cancel is documented
on page 240)

Argument window A Fred window.

window-revert [Generic function]

Syntax window-revert (window fred-mixin) &optional dont-prompt

Description The window-revert generic function causes the window to revert to the
last version saved.

Arguments window A Fred window.
dont-prompt A Boolean value. If the value is nil (the default), the user

is asked to confirm the reversion before it is performed. If
the value of this parameter is true, the reversion is
performed without asking the user.

window-hardcopy [Generic function]

Syntax window-hardcopy (window fred-window) &optional
show-dialog
Chapter 15 Programming the Editor 505

Description The window-hardcopy generic function sends the contents of the
window or dialog item to the current printer. Before printing takes place,
the user is prompted to specify various printer options.

To insert a hard page break in printouts, press Control-Q Control-L (the
quoted form feed character). The character appears as a square box in MCL
windows.

Arguments window A Fred window or Fred dialog item.
show-dialog A Boolean value. If this value is true (the default), MCL

presents a print job dialog to the user. Otherwise, MCL
uses the values entered last time, or the default values if
no print job dialog has been shown yet.

ed-beep [Function]

Syntax ed-beep &rest the-rest

Description The ed-beep function sounds a beep. It returns nil.

Argument the-rest A rest argument; ignored.

Functions implementing standard editing processes

The functions that are found in the standard Macintosh editing menu
are implemented as MCL generic functions. In addition, Macintosh
Common Lisp provides a more extensive Undo facility.
506 Macintosh Common Lisp Reference

cut [Generic function]

copy [Generic function]

paste [Generic function]

clear [Generic function]

undo [Generic function]

undo-more [Generic function]

select-all [Generic function]

Syntax cut (view fred-mixin)
copy (view fred-mixin)
paste (view fred-mixin)
clear (view fred-mixin)
undo (view fred-mixin)
undo-more (view fred-mixin)
select-all (view fred-mixin)

Description These generic functions are each specialized on the fred-mixin class (as
well as on window; see Chapter 4: Views and Windows).

The cut generic function deletes the currently selected text from the buffer
and stores it in the Clipboard and the kill ring.

The copy generic function adds the currently selected text to the Clipboard
and pushes it onto the kill ring. The selection is not removed from the window
or dialog item.

The paste generic function replaces the currently selected text with the text in
the Clipboard. If no text is selected, the text in the Clipboard is inserted at the
insertion point.

The clear generic function deletes the currently selected text from the buffer
without storing it in the Clipboard or the kill ring.

The undo generic function undoes the most recent edit if it can be undone.

The undo-more generic function undoes edits earlier in the edit history if they
can be undone.

The select-all generic function makes the entire contents of the buffer the
currently selected text.

Argument view A Fred window or Fred dialog item.
Chapter 15 Programming the Editor 507

window-can-do-operation [Generic function]

Syntax window-can-do-operation (view fred-mixin) operation
&optional menu-item

Description The window-can-do-operation generic function is called to
determine whether an Edit menu item should be enabled. It returns a
Boolean value indicating whether view can perform operation. (This is a
more general replacement for the older MCL function window-can-
undo-p, which could check only for Undo.)

Arguments view A Fred window or Fred dialog item.
operation A symbol indicating one of the standard editing

operations: cut, clear, copy, paste, select-all,
undo, or undo-more.

menu-item The corresponding Edit menu item.

Example

The following code indicates that *top-listener* contains a
selection that can be cut.
? (window-can-do-operation *top-listener* 'cut)

T

Multiple-level Undo

To support Undo, Fred buffers keep a history list of all changes that
have been made since the buffer was created (or up to a user-definable
limit imposed by *fred-history-length*). When an Undo
command is issued, the most recent command on the history list is
undone. Repeatedly issuing Undo commands undoes earlier and
earlier changes, back to the initial state of the buffer or to the limit
imposed by *fred-history-length*.

A single Fred command may involve several insertions and deletions.
In the functions that relate to Undo, the argument append-p indicates
that an insertion or a deletion is part of the same operation as the
previous insertion or deletion.

Successive adjacent deletions or insertions, as well as multiple
replacements via the Search dialog, are considered a single command.

This Undo history is maintained on a buffer-by-buffer basis. The
number of commands saved for each Fred buffer is under user control.
508 Macintosh Common Lisp Reference

Functions relating to Undo

The following functions support Undo in Macintosh Common Lisp. (See also “Undo commands”
on page 60.)

ed-delete-with-undo [Generic function]

Syntax ed-delete-with-undo (view fred-mixin) start end &optional
save-p reverse-p append-p

Description The ed-delete-with-undo generic function deletes the range in view’s
buffer specified by start and end and saves the deletion on the kill ring and
in the history list of the buffer of view. It returns a cons with the string of
the deleted range in the car and the style vector of the deleted range in the
cdr.

The ed-delete-with-undo generic function works with the *last-
command* variable (defined on page 522) to concatenate successive deletions.
If this function is called repeatedly, it concatenates the deleted text into a single
item on the kill ring rather than creating several items on the kill ring. Deleting
with ed-delete-with-undo sets the last command to :kill.

All Fred commands that delete text call ed-delete-with-undo.

Arguments view A Fred window or Fred dialog item.
start The start of the range to delete. This argument may be an

integer or a buffer mark.
end The end of the range to delete. This argument may be an

integer or a buffer mark.
save-p An argument specifying what to do with deleted text. If

the value of this argument is true (the default), the deleted
text is added to the kill ring. If it is nil, the deleted text is
added to the kill ring only if it is nontrivial.
Nontrivial strings are those that contain both word-
forming characters and word-delimiting characters. The
justification is that text that is explicitly deleted should
always be saved (therefore the value of save-p is true by
default). Text killed incidentally, for instance, when the
user types over selected text, is saved only when it is
complicated.

reverse-p An argument specifying the direction of the deletion. The
value of this argument is true if the text is killed by a
backward deletion.

append-p An argument specifying whether this deletion is part of
the same operation as the previous insertion, deletion, or
replacement. If true, it is.
Chapter 15 Programming the Editor 509

ed-insert-with-undo [Function]

Syntax ed-insert-with-undo view string &optional position append-p

Description The ed-insert-with-undo function inserts string in view at position and
saves string in the history list of the buffer of view.
If string is to be appended to a previous Undo command, append-p
is true.

Arguments view A Fred window or Fred dialog item.
string Either a string, or a cons of a string and a style.
position A position in the view. The default is the insertion point.
append-p An argument specifying whether this insertion is part of

the same operation as the previous insertion, deletion, or
replacement. If true, it is.

ed-replace-with-undo [Function]

Syntax ed-replace-with-undo view start end string &optional
append-p

Description The ed-replace-with-undo function replaces the range of characters
from start to end in view with string and saves the replaced range in the
history list of the buffer of view.

Arguments view A Fred window or Fred dialog item.
start The start of the range to replace. This argument may be an

integer or a buffer mark.
end The end of the range to replace. This argument may be an

integer or a buffer mark.
string Either a string, or a cons of a string and a style.
append-p An argument specifying whether this replacement is part

of the same operation as the previous insertion, deletion,
or replacement. If true, it is.

set-fred-undo-string [Function]

Syntax set-fred-undo-string fred-window string &optional
undo-redo
510 Macintosh Common Lisp Reference

Description The set-fred-undo-string function sets the suffix of the
Undo menu title to string in fred-window. For example, if string
is "Typing", the Undo menu item title becomes Undo Typing or Redo
Typing.

Arguments fred-window A Fred window.
string A string.
undo-redo A value, either :UNDO or :REDO. If it is :REDO, then the

name of the Undo menu item is Redo
string (for example, Redo Typing). If it is :UNDO (the
default), the name of the Undo menu item is Undo string.

setup-undo [Generic function]

Syntax setup-undo (view fred-mixin) function &optional string

Description The setup-undo generic function allows Fred commands to support the
Undo menu item. Any Fred action that can be undone in a way that is not
supported by ed-insert-with-undo, ed-replace-with-undo, or
ed-delete-with-undo should call setup-undo. The function
argument should be a function to call when Undo is chosen. If given, string
should be a short string to be used as the title of the menu item.

Arguments view A Fred window or Fred dialog item.
function The function to call when the Undo menu item is chosen.
string A string serving as the title of the Undo menu item. The

default is “Undo”.

Examples

Here is an example of how to enable Undo and Redo. The function
insert-hello inserts the string "hello". It supports Undo and
Redo.
? (defun insert-hello (window)

 (let* ((buf (fred-buffer window))

 (start-pos (buffer-position buf)))

 (buffer-insert buf "hello" start-pos)

 (fred-update window)

 (setup-undo window

 #'(lambda

 ()

 (buffer-delete buf start-pos)

 (fred-update window)

 (setup-undo window

 #'(lambda ()
Chapter 15 Programming the Editor 511

 (insert-hello window)

 (fred-update window))

 "Redo Hello"))

 "Undo Hello")))

INSERT-HELLO

This example shows how to do the same thing more simply.
? (defun alternative-insert-hello (window)

 (ed-insert-with-undo window "hello")

 (set-fred-undo-string window "Hello")

 (fred-update window))

ALTERNATIVE-INSERT-HELLO

setup-undo-with-args [Generic function]

Syntax setup-undo-with-args (view fred-mixin) function arg
&optional string

Description The setup-undo-with-args generic function works like setup-undo
except that the function must take two arguments; that is, it will be called
via (funcall function view arg). The argument is frequently a position.

 Arguments view A Fred window or Fred dialog item.
function The function to call when the Undo menu item is chosen.
arg An argument to pass the function.
string A string serving as a modifier to the title of the Undo

menu item. For example, if the string is "Typing", the
Undo menu item title is Undo Typing or Redo Typing.

Working with the kill ring

The kill ring is a circular list containing text that has been deleted from
Fred windows or dialog items. Each item in the kill ring is a cons cell.
The car of the cons contains a string. The cdr of the cons contains
either a style vector or nil. (Style vectors are described in “Using
multiple fonts” on page 472.)
512 Macintosh Common Lisp Reference

Functions for working with the kill ring

The following functions work with the kill ring.

ed-kill-selection [Generic function]

Syntax ed-kill-selection (view fred-mixin)

Description The ed-kill-selection generic function deletes the currently selected
text by calling ed-delete-with-undo. The deleted text is saved only if
it is nontrivial (see ed-delete-with-undo on page 509 for a definition
of triviality).

Commands that insert text generally call this function before performing the
insertion.

Argument view A Fred window or Fred dialog item.

add-to-killed-strings [Function]

Syntax add-to-killed-strings string-style-cons

Description The add-to-killed-strings function rotates the kill ring and pushes
string-style-cons to the front of the kill ring.

Argument string-style-cons
A cons whose car is a string and whose cdr is a style
vector or nil.

rotate-killed-strings [Function]

Syntax rotate-killed-strings &optional count

Description The rotate-killed-strings function rotates the kill ring. The third
item becomes the second, the second item becomes the first, and the first
becomes the last. (Remember, the kill ring is a circular list.)

Any empty items are automatically skipped.

Argument count An integer to be added to the normal number by which
the kill ring is rotated. For example, if count is 0, the kill
ring is rotated by 1; if it is 4, the kill ring is rotated by 5.
The default value of count is 0.
Chapter 15 Programming the Editor 513

Using the minibuffer

The minibuffer provides a convenient method for showing information
to users of Fred windows. The information can be the result of a
command, a progress indicator, a request for further information, or
some combination of all these. All Fred windows display the window’s
package in the lower-left corner of the window. This is not considered
part of the minibuffer.

Each instance of fred-window has its own minibuffer, an instance of
the class mini-buffer that is accessed with view-mini-buffer.
Minibuffers are output streams with some additional features.

The variable *clear-mini-buffer* specifies whether to clear the
minibuffer after each Fred command.

Some of the following generic functions are associated with methods
for Fred windows and some with methods for minibuffers.

Because minibuffers are streams, you can use them as the first
argument to format. Sending a newline will clear the minibuffer.

Functions for working with the minibuffer

The following functions define minibuffers.

mini-buffer [Class name]

Description The mini-buffer class is the class of minibuffers, built on output-
stream. A minibuffer displays information about its containing Fred
window.

view-mini-buffer [Generic function]

Syntax view-mini-buffer (view fred-mixin)

Description The view-mini-buffer generic function returns the minibuffer of the
window or dialog item.

Argument view A Fred window or Fred dialog item.
514 Macintosh Common Lisp Reference

set-mini-buffer [Generic function]

Syntax set-mini-buffer (view fred-mixin) string &rest format-args

Description The set-mini-buffer generic function clears the text of the minibuffer,
applies #'format to the minibuffer, string, and format-args, and then
performs a minibuffer update to display the minibuffer.

The minibuffer shows only the last line printed. Sending a newline clears the
minibuffer.

Arguments view A Fred window or Fred dialog item.
string A format control string, suitable for passing as the second

argument to format.
format-args A set of format arguments, suitable for passing to format

along with format-string.

mini-buffer-update [Generic function]

Syntax mini-buffer-update (view fred-mixin)

Description The mini-buffer-update generic function draws the contents of the
minibuffer. This function is normally called whenever the window is
updated. You need to call it explicitly whenever you print to a minibuffer
and wish to show its contents.

Argument view A Fred window or Fred dialog item.

stream-column [Generic function]

Syntax stream-column (stream mini-buffer)

Description The stream-column generic function returns the length of the text
displayed in the minibuffer.

Argument stream A minibuffer stream.

mini-buffer-string [Generic function]

Syntax mini-buffer-string (minibuffer mini-buffer)
Chapter 15 Programming the Editor 515

Description The mini-buffer-string generic function returns the contents of the
minibuffer as a string. This string is a vector with a fill pointer. The
stream-tyo method on minibuffers works by pushing characters onto
this string. Sending a newline to the minibuffer sets the fill pointer to 0.
The stream-column function returns the value of the fill pointer.

Argument minibuffer A minibuffer.

Defining Fred commands

Besides the standard Fred commands, described in Chapter 1: Editing
in Macintosh Common Lisp you can program your own commands.
You may wish to create your own tables of commands (discussed in
“Fred command tables” on page 517). The following macro defines a
Fred command in the currently active command table.

def-fred-command [Macro]

Syntax def-fred-command keystroke function &optional doc-string

Description The def-fred-command macro is equivalent to (comtab-set-key
comtab 'keystroke 'function doc-string). (See the next
section, “Fred Command Tables,” for more information.)

Arguments keystroke A keystroke code or keystroke name.
function A function to be called when keystroke is typed. Because

this argument is not evaluated, it should usually be a
symbol naming a function.

doc-string A documentation string describing the action of keystroke.

Example
? (def-fred-command (:meta #\h) insert-hello)
#<A COMTAB>
516 Macintosh Common Lisp Reference

Fred command tables

The following system is used to translate keystroke events into Fred
actions.

Keystroke codes and keystroke names

This section describes the functions that allow the user to associate Lisp
functions
with keystrokes.

In normal operation, keystrokes are handled by the active window.
Fred treats every keystroke typed in a Fred window as a command.
Associated with every possible keystroke is a Lisp function that
implements the command. Some commands are simple; for example,
pressing A is a command to insert A in the buffer. Some are more
complex; for example, pressing Control-Meta-Shift-F is a command to
select one s-expression forward. Fred makes no distinction between
these two kinds of commands. Indeed, you can easily redefine A to
perform a complicated series of actions.

When you press a key in a Fred window, Fred first translates it into a
keystroke code. The keystroke code contains a character and four flags
called meta, control, function, and shift. The keystroke is encoded as a
small integer, with the character code in bits 0 through 7, the meta flag
in bit 8, the control flag in bit 9, the function flag in bit 10, and the shift
flag in bit 11. See Table 14-1.
Chapter 15 Programming the Editor 517

■ Table 14-1 Modifier bits in the keystroke code

Bit ValueKeyword Keyboard

In Fred programming, keystrokes are usually described in terms of
keystroke names rather than keystroke codes. A keystroke name is either
a character or a list containing a character and zero or more modifier
keywords. The modifier keywords are :control, :shift, :meta,
and :function. Examples of legal keystroke names are (:control
#\a), (:meta #\f), (:function #\1), #\a, and (:control
:meta #\x).

The :function modifier is used to support the function keys on the
Apple Extended Keyboard. The function keys are named using the
characters #\1 through #\9 and #\a through #\f. For example, the F1
key has the keystroke name (:function #\1), the F10 key has the
name (:function #\a), and the F15 key has the name (:function
#\f).

The functions event-keystroke and keystroke-code return the
keystroke code.

The function keystroke-code can return any combination of
character codes and modifier bits, but event-keystroke returns only
a subset:

■ The function bit is set only with character codes of 49–57 or 65–70 (the
digits 1–9 and the letters A–F).

■ The shift bit is set only with character codes representing non graphic
characters or alphabetic characters combined with the Option or
Control key.

You should note that the keystroke code for a letter with the shift bit set
is not equal to the keystroke code for a shifted letter. That is:
? (keystroke-code '(#\A))

65

? (keystroke-code '(:shift #\A))

2113

 8 #x100 :meta Option

 9 #x200 :control Control or Command

10 #x400 :function One of the 15 function
keys

11 #x800 :shift Shift
518 Macintosh Common Lisp Reference

Command tables

The binding between keystrokes and the functions they invoke is stored
in a data structure called a comtab (short for command table). The global
command table is stored in the variable *comtab*. Each window with
fred-mixin may contain a local command table in a slot named
comtab, the default value of which is *comtab*. In addition, each
window may also contain a shadowing command table, which is
initially nil.

Fred dispatch sequence

The view-key-event-handler method for fred-mixin performs
the following sequence of events to process a keystroke.

When Fred receives a keyboard event, it binds the variable *current-
character* to the character typed. It uses the function event-
keystroke to translate the event to a keystroke code and binds
current-keystroke to the keystroke code.

It then checks the variable *fred-keystroke-hook*, which can be a
function, a command table, or nil. If it is a function, the function is run
and is responsible for keystroke processing. If it is a command table, the
keystroke is looked up in the command table. If it is nil, the keystroke
is looked up in the shadowing-comtab or comtab of the Fred
window or Fred dialog item. The keystroke look-up is performed by the
generic function keystroke-function. If *fred-keystroke-
hook* is nil, the keystroke is processed by the function run-fred-
command.

When the function associated with the keystroke returns, Fred updates
the display of the window on the screen, making sure the cursor is
visible. (The function may set the variable *show-cursor-p* to nil
to inhibit this.)

MCL expressions associated with keystrokes

The following functions control and report on the behavior of
keystrokes.
Chapter 15 Programming the Editor 519

event-keystroke [Function]

Syntax event-keystroke message modifier

Description The event-keystroke function takes the message and modifier fields of a
Macintosh event record and returns a keystroke code. It sets the control bit
if the Control key was pressed and the meta bit if the Option key was
pressed. It sets the shift bit if the Shift key was pressed and the character
either is not graphic or is alphabetic and the Control or Option key was
also pressed. The Caps Lock key is ignored. The character portion of the
keystroke code is set to the ASCII code in the message field, except when
Option is pressed. If Option is pressed, the character portion is set to the
character used to generate the keystroke (for instance, the code for Option-
S is #\s rather than #\ß).

Fred calls this function when it receives a key-down event.

Arguments message The message field of an event record.
modifier The modifier field of an event record.

keystroke-name [Function]

Syntax keystroke-name keystroke-code

Description The keystroke-name function returns the name of a keystroke code.

A keystroke name is either a character or a list, for example, (:control
:meta character), (:function character), or (:shift :meta character).

Argument keystroke-code Any valid keystroke code.

keystroke-code [Function]

Syntax keystroke-code keystroke-name

Description The keystroke-code function translates a keystroke name to a
keystroke code.

Argument keystroke-name
A keystroke name. A keystroke name is either a character
or a list, for example, (:control :meta character),
(:function character), or (:shift :meta character).
The keystroke-name argument may also be a keystroke
code (an integer), in which case it is simply returned.
520 Macintosh Common Lisp Reference

Example
? (keystroke-code '(:shift :meta #\F))

2406

? (keystroke-name 2406)

(:SHIFT :META #\F)

keystroke-function [Generic function]

Syntax keystroke-function (view fred-mixin) keystroke &optional
comtab

Description The keystroke-function generic function performs the full Fred
command look-up for keystroke. It always returns a function or a command
table, never nil or another keystroke.

It first looks up the keystroke in comtab, or if comtab is unspecified or nil, in
the shadowing command table of view, if there is one; otherwise it looks in the
command table of view. If the definition is another keystroke, that keystroke is
looked up. Circularity will be detected.

Arguments view A Fred window or Fred dialog item.
keystroke A keystroke name or keystroke code.
comtab A command table.

fred-keystroke-hook [Variable]

Description The *fred-keystroke-hook* variable provides a hook into the Fred
command dispatch process.

If this variable is a function, the function is called with one argument, the
Fred window or dialog item, to do the keystroke processing. If it is a
command table, the keystroke is looked up in the command table. If it is
nil, the keystroke is looked up in the shadowing command table or
command table of the Fred window or Fred dialog item.

The keystroke look-up is performed by the generic function keystroke-
function.
Chapter 15 Programming the Editor 521

last-command [Variable]

Description The *last-command* variable is bound by run-fred-command to the
value saved by the last command. Thus if a Fred command does not set the
last command with set-fred-last-command, the value of *last-
command* is nil when the next command runs.

This information is useful when one command needs to know what the
previous one was. For example, repeatedly calling ed-yank-pop (Meta-Y)
inserts successive strings from the kill ring into a window. For this to work,
each call to ed-yank-pop needs to know whether the last Fred command was
also ed-yank-pop.

The user should never set *last-command* explicitly; use set-fred-
last-command instead.

fred-last-command [Generic function]

Syntax fred-last-command (view fred-mixin)

Description The fred-last-command generic function returns the most recent Fred
command.

Argument view A Fred window or Fred dialog item.

set-fred-last-command [Generic function]

Syntax set-fred-last-command (view fred-mixin) new-last-command

Description The generic function set-fred-last-command sets the last command
of view to new-last-command.

Always use set-fred-last-command to set the value of *last-
command*; do not set it directly.

Arguments view A Fred window or Fred dialog item.
new-last-command

A command to which to set *last-command*.
522 Macintosh Common Lisp Reference

current-character [Variable]

Description The *current-character* variable is bound to the character of the
current keystroke during the execution of Fred commands. This variable
is used by functions such as ed-self-insert.

current-keystroke [Variable]

Description The *current-keystroke* variable is bound to the current keystroke
during the execution of Fred commands.

ed-self-insert [Generic function]

Syntax ed-self-insert (view fred-mixin)

Description The ed-self-insert generic function inserts *current-character*
into the window. You should call this function only from within Fred
commands (at which time *current-character* is sure to be bound).
The function ed-self-insert checks for a numeric prefix, such as
Control-U, that tells it how many times to execute itself.

Argument view A Fred window or Fred dialog item.

MCL expressions relating to command tables

The following MCL expressions are used to create and govern
command tables.

comtab [Variable]

Description The *comtab* variable is the global command table. You can modify this
command table or set the variable to a new command table.
Chapter 15 Programming the Editor 523

listener-comtab [Variable]

Description The *listener-comtab* variable contains the initial form of comtab
for the class listener. Whenever a new Listener is created, its command
table is initially the value of this variable.

By modifying *listener-comtab*, you can change the behavior of the
Listener without affecting other Fred windows.

Note that setting this variable to a new command table (as opposed to
modifying the command table it is set to) affects only those Listeners created
after the change.

control-x-comtab [Variable]

Description The *control-x-comtab* variable contains the command table used
by the Control-X keystroke.

make-comtab [Function]

Syntax make-comtab &optional default

Description The make-comtab function returns a command table, with default as the
means to process all keystrokes.

Argument default A default value. If default is a command table, when a
keystroke is looked up in the new command table,
Macintosh Common Lisp looks in default. If default is nil,
it defaults to the value of *comtab*. If it is anything else,
for example, a function, default is expected to process a
keystroke.

copy-comtab [Function]

Syntax copy-comtab &optional source-comtab

Description The copy-comtab function returns a new command table that is initially
functionally equivalent to source-comtab.
524 Macintosh Common Lisp Reference

Argument source-comtab A command table or nil. If source-comtab is specified as
nil, it returns a copy of the command table that was in
use when Macintosh Common Lisp was launched. This is
useful if you have somehow corrupted the current
command table.

comtabp [Function]

Syntax comtabp thing

Description The comtabp function returns true if thing is a command table; otherwise,
it returns nil.

Argument thing Any Lisp object.

comtab-set-key [Function]

Syntax comtab-set-key comtab keystroke function &optional doc-string

Description The comtab-set-key function sets the definition of keystroke to function
within comtab.

Arguments comtab A command table.
keystroke A keystroke.
function A function to be called when keystroke is pressed. The

function may be any of the following:
A symbol, a compiled function, or a lambda expres-

sion, indicating a function to call when keystroke is
entered.

A command table, indicating that the keystroke is a
prefix character, such as Control-X, that reads an-
other character and looks it up in its own command
table.

Another keystroke (name or code) to indicate that key-
stroke should do whatever the other keystroke
would do.

The value nil, which causes the command table’s de-
fault function to process the keystroke.

doc-string A documentation string describing the action of keystroke.

Example
Chapter 15 Programming the Editor 525

For example, the following form binds the F12 key to a command that
prints the date in the top window:
? (comtab-set-key *comtab* '(:function #\c) ;F12 key

 #'(lambda

 (d)

 (multiple-value-bind

 (second minutes hour date month year)

 (get-decoded-time)

 (declare (ignore second minutes hour))

 (format d "~a/~a/~a"

 month

 date

 (- year 1900))))

 "print the date in the top window")

#<COMTAB #x2F9E99>

comtab-get-key [Function]

Syntax comtab-get-key comtab keystroke

Description The comtab-get-key function looks up the definition of keystroke in
comtab. This function is the reverse of comtab-set-key.

Arguments comtab A command table. The value of comtab may be a symbol,
a compiled function, a command table, another
keystroke, or nil.

keystroke A keystroke code or keystroke name.

Example
? (comtab-get-key *comtab* '(:meta #\h))
INSERT-HELLO

comtab-key-documentation [Function]

Syntax comtab-key-documentation comtab keystroke

Description The comtab-key-documentation function returns the documentation
string associated with keystroke.

Arguments comtab A command table. The value of comtab may be a symbol,
a compiled function, a command table, another
keystroke, or nil.

keystroke A keystroke code or keystroke name.
526 Macintosh Common Lisp Reference

Example
? (comtab-key-documentation *comtab* '(:function #\c))

"print the date in the top window"

comtab-find-keys [Function]

Syntax comtab-find-keys comtab function

Description The comtab-find-keys function returns a list of all keystrokes bound
to function in comtab.

Arguments comtab A command table. The value of comtab may be a symbol,
a compiled function, a command table, another
keystroke, or nil.

function A function. The function symbol must be quoted
(not #").

Example
? (comtab-find-keys *comtab* 'ed-open-line)

(623)
Chapter 15 Programming the Editor 527

528 Macintosh Common Lisp Reference

529

Chapter 15:

Low-Level OS Interface

Contents

Interfacing to the Macintosh / 530
Macptrs / 531
Memory management / 532

Stack blocks / 533
Accessing memory / 534

Miscellaneous routines / 545
Strings, pointers, and handles / 545
Pascal VAR arguments / 549
The Pascal null pointer / 549
Callbacks to Lisp from the OS and other code / 550
Defpascal and Interrupts / 552

This chapter discusses basic information necessary for accessing the Macintosh
Toolbox and OS, and other code written in other languages.

You should read this chapter if you are accessing Macintosh data structures at
a low level. If you are using higher-level accessing, such as through records
and traps, you should read this chapter for background information.

When making any operating system call, you should be familiar with its
description in Inside Macintosh. The discussions in this chapter assume some
familiarity with Inside Macintosh.

Many MCL programmers will not need to use the facilities described in this
and the following chapter. The object-oriented interface to the Macintosh OS
is generally much safer and easier to use, when it is sufficient.

Interfacing to the Macintosh

Macintosh Common Lisp provides two levels of interface to the
Macintosh OS.

■ At the higher level, you can access the Macintosh Toolbox and
Macintosh Operating System through predefined MCL classes, such as
view and window, and the methods that apply to them. These are easy
and safe to use, insulating you from both syntactic and semantic errors
associated with Macintosh data structures.

■ At the lower level, you can directly call the majority of Macintosh OS
entry points and use Macintosh record structures and constants.

This chapter describes general considerations when interfacing
between MCL and code written in other languages, such as the code
implementing the Macintosh OS. Details of accessing OS entry points
are discussed in Chapter 16: OS Entry Points and Records.

In general, special care should be taken when calling outside of the Lisp
world. Because most other languages provide much less error checking
than MCL, calling code written in other languages has the possibility of
crashing your Macintosh.

Sharing Data between MCL and the OS

Macintosh Common Lisp manipulates two distinct sets of data:
Macintosh data, such as windows, patterns, and rectangles, and Lisp
data, such as lists, symbols, and objects. Lisp data and Macintosh data
are stored in different places and in different formats. Macintosh data
is stored on the application heap, and Lisp data is stored on the Lisp
heap. These two heaps operate independently. Each piece of data
belongs on either one heap or the other.

Some Lisp data contains pointers to Macintosh data. For example,
window objects (Lisp data) contain pointers to Macintosh window
records (on the Macintosh heap). With isolated exceptions, Macintosh
data should not contain pointers to Lisp objects.

In general, Macintosh data is needed only for communication with the
Macintosh OS. Before MCL can pass data to the OS, the data must be
coerced to a form that the OS can use. This data cannot be stored on the
Lisp heap but instead must be stored on the application heap or on the
stack.
530 Macintosh Common Lisp Reference

Macptrs

A macptr (an object of type macptr) represents a 32-bit address.

Macptrs are generated in the following ways:

■ By a call to a trap, such as #_newHandle, #_newPtr, or
#_newWindow that allocates a new pointer or handle.

■ By a call to %get-ptr, where you are referencing some memory
location relative to some Macintosh pointer.

■ By a call to make-record.

■ By a call to %int-to-ptr.

■ By the macros %stack-block or rlet.

They are required in the following circumstances:

■ As the first argument to %get- and %put- functions.

■ As the value of any parameter to an OS entry point passed in an
address register.

■ As the value of any parameter to an OS entry point that requires a
pointer, record, handle, or array.

You cannot pass any other Lisp object to a function requiring a macptr.
In particular, nil cannot be passed as a pointer to a Macintosh data
structure. Instead, you pass the macptr which is the result of calling
%null-ptr.

Two macptrs to the same address are eql but not necessarily eq. That
is, the two pointers themselves may not be the same; the address they
reference is the same. If both x and y point to (%int-to-ptr 0), then
? (eq x y)

...undetermined...
? (eql x y)

T

The address to which a macptr points is not changed by garbage
collection.

In general, performing an operation such as %int-to-ptr or %get-
ptr results in the allocation of a new Lisp macptr object. However, the
MCL compiler avoids allocating macptrs whenever possible.

Here is an example in which a macptr is not allocated.
? (defun peek-long (addr)

"Returns the contents of the longword at ADDR."

(%get-long (%int-to-ptr addr)))

PEEK-LONG
Chapter 15: Low-Level OS Interface 531

Since the result of (%int-to-ptr addr) is used directly by %get-
long, the compiler does not need to allocate a macptr.

By taking advantage of the following in your code, you can reduce the
incidental allocation of macptrs.:

■ Addresses that are consumed directly by primitive operations do not
allocate a macptr. Of the MCL low-level functions for reading and
writing to memory locations, most avoid allocating macptrs. (See
“Accessing memory” on page 534 and “Strings, pointers, and handles”
on page 545.)

■ Macptrs can be explicitly stack-allocated. When appropriate, you may
use dynamic-extent declarations to indicate that the compiler may
safely stack-allocate macptrs used in local contexts.

■ Macptrs can be destructively modified with %setf-macptr.

%setf-macptr [Function]

Syntax %setf-macptr macptr pointer

Description The %setf-macptr function destructively modifies macptr so that it
references the address referenced by pointer. The compiler open-codes this
function.

Arguments macptr A macptr.
pointer A macptr.

Memory management

Macintosh Common Lisp works in cooperation with the Macintosh
Memory Manager. Thus you can use the traps #_NewPtr and
#_NewHandle to allocate blocks of memory on the application heap.
The Macintosh and Lisp heaps are dynamically resized to satisfy
memory requests. This resizing sometimes triggers a garbage
collection.

s Important You are responsible for releasing memory allocated on the Macintosh
heap. (You can do so with #_DisposPtr and #_DisposHandle.) The
contents of this memory are not subject to garbage collection even if all
pointers to the memory are lost. s
532 Macintosh Common Lisp Reference

The #_NewPtr and #_NewHandle traps are automatically called by
make-record, described in Chapter 16: OS Entry Points and Records.
The #_DisposPtr and #_DisposHandle traps are automatically
called by dispose-record.

Stack blocks

When you need a small amount of memory for temporary storage, it is
often more convenient and more efficient to bypass the Macintosh
Memory Manager. The %stack–block macro allows programs to
allocate blocks of memory on the stack. Be very careful using %stack–
block. When you exit the %stack-block form, all the memory
allocated is reclaimed and so any remaining pointers to the stack block
become invalid. The %stack-block form should be used only for
well-defined temporary storage, for example, to set up rectangles or I/
O parameter blocks to be passed to OS entry points, or to store var
arguments temporarily.

%stack-block [Macro]

Syntax %stack-block ({(symbol size)}+) {form}*

Description For each symbol/size pair, the %stack-block macro allocates a block of
storage size bytes long and binds symbol to a macptr to the block. The forms
are executed in the resulting environment.

The %stack-block macro is usually not used directly to stack-allocate
Macintosh records. Instead, use the rlet macro described in Chapter 16: OS
Entry Points and Records.”

The action of %stack-block is semantically equivalent to doing a
#_NewPtr/ #_DisposPtr pair for each variable but is much more efficient.
The bindings and the storage created by %stack–block have dynamic extent;
they become invalid when the form is exited from.

If a storage block of indefinite extent is needed, make-record should be used
instead; see Chapter 16: OS Entry Points and Records.”

If there is not enough room on the stack to allocate the requested memory, an
error is signaled.

(The obsolete %vstack-block macro is now semantically equivalent to
%stack-block and is provided for backward compatibility only.)

Arguments symbol Any symbol. This symbol is bound to the stack block for
the duration of the call.
Chapter 15: Low-Level OS Interface 533

size The maximum total size for an individual stack block
form is 32K bytes. Every size must evaluate to a positive
fixnum.

form Zero or more forms, which are evaluated as the body.
Declarations may appear at the head of the body.

Example

In this example, an 8-byte block is allocated on the stack. The memory
is filled with the coordinates of a rectangle. A pointer to the block—and
two additional words—are then passed to the OS entrypoint
#_FrameRoundRect. When the window is redrawn, a rectangle with
rounded corners appears at the given coordinates:
? (setq my-window (make-instance 'window))

#<WINDOW "Untitled" #x46E929>

? (defmethod view-draw-contents ((w (eql my-window)))

 (let ((oval-width 12)

 (oval-height 8))

 (%stack-block ((my-rect 8))

 (%put-word my-rect 12 0)

 (%put-word my-rect 40 2)

 (%put-word my-rect 32 4)

 (%put-word my-rect 80 6)

 (#_FrameRoundRect my-rect

 oval-width oval-height))))

#<STANDARD-METHOD VIEW-DRAW-CONTENTS ((EQL #<WINDOW
"Untitled"
 #x46E929>))>

? (view-focus-and-draw-contents my-window)

NIL

Accessing memory

Once memory for a structure has been allocated, programs need
methods for directly reading from and writing to the memory.
Macintosh Common Lisp provides the following low-level functions
for reading and writing to memory locations. While these functions
give you direct access to memory locations, they do not give you
structured access. For most purposes, the macros pref, href, and their
corresponding setf macros will be more useful. These macros are
described in Chapter 16: OS Entry Points and Records.
534 Macintosh Common Lisp Reference

Each of the following functions takes offset, a fixnum, as an optional
argument. No type-checking is performed on offset. It is sign-extended
to 32 bits. Most calls to these functions are compiled inline for
efficiency.

◆ Note: No error checking is performed on any of the following functions.
Since their purpose is to let you read and write to the memory in
unforeseen ways, they aren’t designed to prevent serious programming
errors, and it is possible to read and write to memory locations in ways
that seriously affect your computer. For example, on a 68000 (but not a
68020) microprocessor, accessing a word at an odd memory address
results in a fatal error. Writing to a nonexistent memory address results
in a bus access error, and so on.

%get-signed-byte [Function]

Syntax %get-signed-byte macptr &optional offset

Description The %get-signed-byte function gets the byte (8 bits) at macptr + offset
and returns it as a signed Lisp integer in the range –128 through 127. The
compiler open-codes this function.

Arguments macptr A macptr.
offset A fixnum used to offset the address specified by macptr.

%get-unsigned-byte [Function]

%get-byte [Function]

Syntax %get-unsigned-byte macptr &optional offset
%get-byte macptr &optional offset

Description These equivalent functions get the byte (8 bits) at macptr + offset and return
it as an unsigned Lisp integer in the range 0 through 255. The compiler
open-codes these functions.

Arguments macptr A macptr.
offset A fixnum used to offset the address specified by macptr.

%hget-byte [Function]

Syntax %hget-byte handle &optional offset
Chapter 15: Low-Level OS Interface 535

Description The %hget-byte function accesses a handle, gets the byte (8 bits) at handle
+ offset, and returns it as an unsigned Lisp integer in the range 0 through
255. The compiler open-codes this function.

The expression (%hget-byte handle offset) is equivalent to (%get-byte
(%get-ptr handle) offset).

Arguments handle A handle. This argument must be a macptr.
offset Window.

%hget-signed-byte [Function]

Syntax %hget-signed-byte handle &optional offset

Description The %hget-byte function accesses a handle, gets the byte (8 bits) at handle
+ offset, and returns it as a signed Lisp integer in the range –128 through
127. The compiler open-codes this function.

Arguments handle A handle. This argument must be a macptr.
offset Window.

%get-signed-word [Function]

Syntax %get-signed-word macptr &optional offset

Description The %get-signed-word function gets the word (16 bits) at macptr +
offset, sign-extends it, and returns it as a signed Lisp integer in the range –
32,768 through 32,767. The compiler open-codes this function.

Arguments macptr A macptr.
offset A fixnum used to offset the address specified by macptr.

%get-unsigned-word [Function]

%get-word [Function]

Syntax %get-unsigned-word macptr &optional offset
%get-word macptr &optional offset

Description These equivalent functions get the word (16 bits) at macptr + offset and
return it as an unsigned Lisp integer in the range 0 through 65,535. The
compiler open-codes these functions.

Arguments macptr A macptr.
offset A fixnum used to offset the address specified by macptr.
536 Macintosh Common Lisp Reference

%hget-word [Function]

Syntax %hget-word handle &optional offset

Description The %hget-word function accesses a handle, gets the word (16 bits) at
handle + offset, and returns it as an unsigned Lisp integer in the range 0
through 65,535. The compiler open-codes this function.

Arguments handle A handle. This argument must be a macptr.
offset Window.

%hget-signed-word [Function]

Syntax %hget-signed-word handle &optional offset

Description The %hget-signed-word function accesses a handle, gets the word (16
bits) at handle + offset, sign-extends it, and returns it as a signed Lisp integer
in the range –32,768 through 32,767. The compiler open-codes this
function.

Arguments handle A handle. This argument must be a macptr.
offset Window.

%get-long [Function]

%get-signed-long [Function]

Syntax %get-long macptr &optional offset
%get-signed-long macptr &optional offset

Description These equivalent functions get the macptr at macptr + offset and return a
signed Lisp integer in the range – 2,147,483,648 through 2,147,483,647. The
compiler open-codes these functions.

Arguments macptr A macptr.
offset A fixnum used to offset the address specified by macptr.

%hget-long [Function]

%hget-signed-long [Function]

Syntax %hget-long handle &optional offset
%hget-signed-long handle &optional offset
Chapter 15: Low-Level OS Interface 537

Description These functions access a handle, get the macptr at handle + offset, and
return a signed Lisp integer in the range –2,147,483,648 through
2,147,483,647. The compiler open-codes these functions.

Arguments handle A handle. This argument must be a macptr.
offset Window.

%get-unsigned-long [Function]

Syntax %get-unsigned-long macptr &optional offset

Description The %get-unsigned-long function gets the macptr at macptr + offset
and returns an unsigned Lisp integer in the range 0 through 4,294,967,295.
The compiler open-codes this function.

Arguments macptr A macptr.
offset A fixnum used to offset the address specified by macptr.

%hget-unsigned-long [Function]

Syntax %hget-unsigned-long macptr &optional offset

Description The %hget-unsigned-long function gets the macptr at macptr + offset
and returns an unsigned Lisp integer in the range 0 through 4,294,967,295.
The compiler open-codes this function.

Arguments macptr A handle.
offset Window.

%get-ptr [Function]

Syntax %get-ptr macptr &optional offset

Description The %get-ptr function returns the macptr at macptr + offset. The compiler
open-codes this function. The resulting macptr is heap-consed unless it is
used by another open-coded low-level primitive or used as the initial
binding of a variable that is declared to have dynamic extent.

Arguments macptr A macptr.
offset A fixnum used to offset the address specified by macptr.
538 Macintosh Common Lisp Reference

%hget-ptr [Function]

Syntax %hget-ptr handle &optional offset

Description The %hget-ptr function accesses a handle and returns the macptr at
handle + offset. The compiler open-codes this function.

Arguments handle A handle. This argument must be a macptr.
offset Window.

%get-string [Function]

Syntax %get-string macptr &optional offset

Description The %get-string function gets the Pascal string at macptr + offset and
returns it as a Lisp string. This function is not open-coded by the compiler.
If macptr points to a handle on the Macintosh heap, the handle is
dereferenced to access the string.

Arguments macptr A macptr.
offset A fixnum used to offset the address specified by macptr.

%get-cstring [Function]

Syntax %get-cstring macptr &optional offset end

Description The %get-cstring function gets string at macptr + offset and returns it as
a Lisp string. This function is not open-coded by the compiler. If macptr
points to a handle on the Macintosh heap, the handle is dereferenced to
access the string.

Arguments macptr A macptr.
offset A fixnum used to offset the address specified by macptr.

The default is 0.
end The end of the string to be gotten. The default is offset.

%get-ostype [Function]

Syntax %get-ostype macptr &optional offset

Description The %get-ostype function gets the 4 bytes at macptr + offset and returns
them as an os-type, a keyword of four characters. (See Inside Macintosh for
details on os-types.) It returns nil.
Chapter 15: Low-Level OS Interface 539

Arguments macptr A macptr.
offset A fixnum used to offset the address specified by macptr.

%get-double-float [Function]

%get-single-float [Function]

Syntax %get-double-float macptr &optional offset target
%get-single-float macptr &optional offset target

Description These functions gets the macptr at macptr + offset and return it as a floating
point number. If target is specified, it should be a double-float. It will be
descructively modified to hold the result. (In the case of %get-single-
float, the number will be converted from single-float to double-float
format.)

If you use the target argument, take precautions that you do not modify in
place a floating point number that is used elsewhere in your program. Take
particular care not to modify the system wide unique 0.0 instance. It is safest
to create a fresh target locally, for example by the call (ccl::%copy-float
0.0).

Arguments macptr A macptr.
offset A fixnum used to offset the address specified by macptr.
target A floating point number.

%hget-double-float [Function]

%hget-single-float [Function]

Syntax %hget-double-float handle &optional offset target
%hget-single-float handle &optional offset target

Description These functions access a handle, get the macptr at handle + offset and return
it as a floating point number. If target is specified, it should be a double-
float. It will be descructively modified to hold the result. (In the case of
%hget-single-float, the number will be converted from single-float
to double-float format.)

If you use the target argument, take precautions that you do not modify in
place a floating point number that is used elsewhere in your program. Take
particular care not to modify the system wide unique 0.0 instance. It is safest
to create a fresh target locally, for example by the call (ccl::%copy-float
0.0).

Arguments handle A macptr which is a handle.
offset A fixnum used to offset the address specified by macptr.
540 Macintosh Common Lisp Reference

target A floating point number.

%put-byte [Function]

Syntax %put-byte macptr data &optional offset

Description The %put-byte function stores the low 8 bits of data at macptr + offset. It
returns nil. The compiler open-codes this function.

Arguments macptr A macptr.
data A fixnum. The low 8 bits are used. This argument is not

type-checked.
offset A fixnum used to offset the address specified by macptr.

%hput-byte [Function]

Syntax %hput-byte handle data &optional offset

Description The %hput-byte function accesses a handle and stores the low 8 bits of
data at handle + offset. It returns nil. The compiler open-codes this
function.

Arguments handle A handle. This argument must be a macptr.
data A fixnum. The low 8 bits are used.
offset A fixnum used to offset the address specified by macptr.

%put-word [Function]

Syntax %put-word macptr data &optional offset

Description The %put-word function stores the low 16 bits of data at macptr + offset. It
returns nil. The compiler open-codes this function.

Arguments macptr A macptr.
data A fixnum. The low 16 bits are used. This argument is not

type-checked.
offset A fixnum used to offset the address specified by macptr.

%hput-word [Function]

Syntax %hput-word handle data &optional offset
Chapter 15: Low-Level OS Interface 541

Description The %hput-word function accesses a handle and stores the low 16 bits of
data at handle + offset. It returns nil. The compiler open-codes this
function.

Arguments handle A handle. This argument must be a macptr.
data A fixnum. The low 16 bits are used.
offset A fixnum used to offset the address specified by handle.

%put-long [Function]

%put-full-long [Function]

Syntax %put-long macptr data &optional offset
%put-full-long macptr data &optional offset

Description These functions store the integer value of data at macptr + offset. (The
function %put-full-long is included for backward compatibility; both
functions allow full 32-bit accuracy.) The compiler open-codes these
functions.

Arguments macptr A macptr.
data Any Lisp object that can be coerced to a 32-bit immediate

quantity.
offset A fixnum used to offset the address specified by macptr.

%hput-long [Function]

Syntax %hput-long handle data &optional offset

Description The %hput-long function accesses a handle and stores the integer value
of data at handle + offset. The compiler open-codes this function.

Arguments handle A dereferenced handle. This argument must be a macptr.
data Any Lisp object that can be coerced to a 32-bit immediate

quantity.
offset A fixnum used to offset the address specified by handle.

%put-ptr [Function]

Syntax %put-ptr macptr data &optional offset

Description The %put-ptr function stores data as a macptr at macptr + offset and
returns nil. The compiler open-codes this function.

Arguments macptr A macptr.
542 Macintosh Common Lisp Reference

data Another macptr.
offset A fixnum used to offset the address specified by macptr.

%hput-ptr [Function]

Syntax %hput-ptr handle data &optional offset

Description The %hput-ptr function accesses a handle, stores data as a macptr at
handle + offset, and returns nil. The compiler open-codes this function.

Arguments handle A handle. This argument must be a macptr.
data Another macptr.
offset A fixnum used to offset the address specified by handle.

%put-string [Function]

Syntax %put-string macptr string &optional offset maxsize

Description The %put-string function stores string as a Pascal string starting at
macptr + offset. The compiler does not open-code this function.

Arguments macptr A macptr.
string A string.
offset A fixnum used to offset the address specified by macptr.

The default is 0.
maxsize The maximum size of the string. The default is 255.

%put-cstring [Function]

Syntax %put-cstring macptr string &optional offset maxsize

Description The %put-cstring function stores string starting at macptr + offset. The
compiler open-codes this function.

Arguments macptr A macptr.
string A string.
offset A fixnum used to offset the address specified by macptr.
maxsize The maximum allowable size of the string. If the length of

string is larger than maxsize, an error is signaled.
Chapter 15: Low-Level OS Interface 543

%put-ostype [Function]

Syntax %put-ostype macptr string &optional offset

Description The %put-ostype function stores string as 4 bytes at macptr + offset. The
argument string may be anything that can be coerced to a 32-bit value—in
other words, %put-ostype is another name for %put-long. The
compiler open-codes this function.

Arguments macptr A macptr.
string A string with a length of four characters, used to specify

the os-type, or a symbol with a four-character symbol-
name.

offset A fixnum used to offset the address specified by macptr.

%put-double-float [Function]

%put-single-float [Function]

Syntax %put-double-float macptr float &optional offset
%put-single-float macptr float &optional offset

Description These functions store float at macptr + offset. (In the case of %put-single-
float, float will be converted from double-float to single-float format.)

Arguments macptr A macptr.

float A floating point number.
offset A fixnum used to offset the address specified by macptr.

%hput-double-float [Function]

%hput-single-float [Function]

Syntax %hput-double-float handle float &optional offset
%hput-single-float handle float &optional offset

Description These functions store float at handle + offset. (In the case of %hput-
single-float, the number will be converted from double-float to
single-float format.)

Arguments handle A macptr which is a handle.

float A floating point number.
offset A fixnum used to offset the address specified by macptr.
544 Macintosh Common Lisp Reference

Miscellaneous routines

The following routines provide additional tools and information for
communicating between Macintosh Common Lisp and code written in
other languages, such as the Macintosh OS. These include a set of
functions for performing various types of data conversion and handle
dereferencing, information on Pascal VAR arguments and Boolean
values, and the definitions of Lisp functions that can be called by ROM
routines.

Strings, pointers, and handles

The following utilities are provided for using strings, pointers, and
handles.

with-pstrs [Macro]

with-cstrs [Macro]

with-returned-pstrs [Macro]

Syntax with-pstrs ({(symbol string &optional start end)}+) {form}+

with-cstrs ({(symbol string &optional start end)}+) {form}+

with-returned-pstrs ({(symbol string &optional start end)}+)
{form}+

Description The with-pstrs macro allocates memory for each string, stores string in
this memory in the Pascal string format, and binds the corresponding
symbol to a pointer to the memory.

The with-pstrs macro saves the trouble of allocating memory and filling it
with individual characters every time a Macintosh-accessible string is needed.

The with-cstrs macro allocates memory for each string, stores string in this
memory, and binds the corresponding symbol to a pointer to the memory.

The with-returned-pstrs macro allocates 256 bytes for each string (rather
than trying to optimize the amount of memory allocated). This guarantees that
the returned string does not overwrite other segments of memory.

Traps that use the strings as VAR arguments for returning values should be
called through the macro with-returned-pstrs.

Arguments symbol A symbol that is bound to the Pascal string for the
duration of the macro.
Chapter 15: Low-Level OS Interface 545

string A string with a maximum length of 255 characters.
start The position at which to begin reading characters from

the string.
end The position at which to stop reading characters from the

string.
form Zero or more forms that make up the body of the macro.

macptrp [Function]

Syntax macptrp thing

Description The macptrp function returns t if and only if thing is a macptr; otherwise,
it returns nil.

Argument thing Any Lisp data object.

pointerp [Function]

Syntax pointerp macptr &optional errorp

Description The pointerp function returns t if and only if the address referenced by
macptr is a valid address; otherwise, it returns nil. If macptr is not a
macptr, an error is signaled.

Arguments macptr A macptr.
errorp An argument specifying how to treat errors. If errorp is

true, pointerp signals an error if macptr is not a macptr.
Otherwise it returns nil.

zone-pointerp [Function]

Syntax zone-pointerp thing

Description The zone-pointerp function returns t if thing is a pointer to a
nonrelocatable system or application-heap-zone memory block;
otherwise, it returns nil.

The test is performed heuristically by determining if thing points to a
Macintosh heap zone, and if so, determining if the longword before the
address pointed at by thing is equal to the heap zone. A zone pointer is
different from a generic pointer because the former points to a memory block
that was allocated using #_NewPtr, and because the various Memory
Manager pointer traps, such as #_DisposPtr, may be used on it.
546 Macintosh Common Lisp Reference

For more information on the structure of zone pointers, see the information on
the Memory Manager in Inside Macintosh.

Argument thing Any Lisp data object.

handlep [Function]

Syntax handlep thing

Description The handlep function returns t if thing is a Macintosh handle; otherwise,
it returns nil.

This is determined heuristically by checking to see whether thing points to the
system or application heap zone, and if so, indirecting through thing to
determine if the longword prior to the address plus the zone pointer are equal
to thing.

For more information on the structure of handles, see the information on the
Memory Manager in Inside Macintosh.

Argument thing Any Lisp data object.

with-dereferenced-handles [Macro]

Syntax with-dereferenced-handles ({(variable handle)}+) {form}+

Description The with-dereferenced-handles macro executes forms with each
variable bound to the locked, dereferenced handle.

Only previously unlocked handles are locked. Upon exit, only handles that
were unlocked on entry are unlocked. (This prevents a bug that occurs when
programming the Macintosh computer with other languages.) Unlocking of
handles is protected against with unwind-protect, so the handles are
guaranteed to be left in the same state before and after the call to with-
dereferenced-handles, even if termination is abnormal.

Arguments variable A Lisp variable.
handle A Macintosh handle.
form A set of forms that are evaluated sequentially in the

environment in which the handles are dereferenced and
bound to variables.
Chapter 15: Low-Level OS Interface 547

with-pointers [Macro]

Syntax with-pointers ({(variable pointer-or-handle)}+) {form}+

Description The with-pointers macro binds variable to the pointer for each pointer-
or-handle that is a pointer and binds variable to the locked, dereferenced
handle for each pointer-or-handle that is a handle.

When binding handles, with-pointers acts just as with-dereferenced-
handles does.

The with-pointers macro is useful if you are unsure whether pointer-or-
handle will be a pointer or a handle. It signals an error if pointer-or-handle is
neither a pointer nor a handle.

Arguments variable A Lisp variable.
pointer-or-handle

A Macintosh pointer or handle.
form One or more forms that are evaluated in the resulting

environment.

%inc-ptr [Function]

Syntax %inc-ptr point &optional number

Description The %inc-ptr function increments (or decrements) pointer by adding
number to it and returns a new pointer. The compiler open-codes this
function.

Arguments pointer A macptr.
number An integer. The default is 1.

%incf-ptr [Macro]

Syntax %incf-ptr pointer number

Description The %incf-ptr function destructively modifies pointer by adding number
to it and returns the modified pointer. The compiler open-codes this
function.

Arguments pointer A mactptr.
number An integer.
548 Macintosh Common Lisp Reference

%ptr-to-int [Function]

Syntax %ptr-to-int pointer

Description The %ptr-to-int function returns an integer coerced from pointer, that
is, the numerical address pointer points to. The compiler open-codes this
function. This function may return a bignum.

Argument pointer A macptr.

%int-to-ptr [Function]

Syntax %int-to-ptr integer

Description The %int-to-ptr function returns a macptr coerced from integer, that is,
a pointer to the numerical address integer. The compiler open-codes this
function.

Argument integer An integer.

Pascal VAR arguments

Pascal VAR arguments are passed by reference rather than by value;
that is, you pass the function a pointer to a piece of data rather than the
data itself. The called function may then affect the data and in this way
communicate information to the caller. Implementing VAR arguments
in Macintosh Common Lisp is very easy. Just allocate memory of the
appropriate size for the piece of data (either on the stack or on the
Macintosh heap, depending on how long you want to use that piece of
data) and pass the macptr as the VAR argument.

The Pascal null pointer

The following two MCL expressions are used to work with the Pascal
null pointer.

%null-ptr [Macro]

Syntax %null-ptr
Chapter 15: Low-Level OS Interface 549

Description The result of (%null-ptr) is equivalent to the Pascal null pointer and to
(%int-to-ptr 0).

%null-ptr-p [Function]

Syntax %null-ptr-p pointer

Description The %null-ptr-p function returns t if pointer is a Pascal null pointer.

Argument pointer A pointer.

Callbacks to Lisp from the OS and other code

The following macros define Lisp functions that can be passed to the OS
or to other C or Pascal code. This lets the other code make callbacks to
Lisp.

defpascal [Macro]

defccallable [Macro]

Syntax defpascal name ({type parameter }* [return-type]) [doc-string]
{form}*
defpascal name (:reg parameter) {form}*
defccallable name ({type parameter }* [return-type])
[doc-string] {form}*

Description The syntax of these macros is similar to that of defun, except that the
lambda list contains alternating types and parameter names and ends with
a type specifier for the value returned by the procedure. The &optional,
&keyword, and &rest keywords are not permitted, because they are not
supported by the Pascal- or C-calling sequences.

The value cell of name is set to a pointer to the procedure. This pointer may be
passed to OS entry points or to C or Pascal code that expects a pointer to a
function.

Arguments name A symbol to name the function.
type The type of the corresponding parameter. Arguments

passed to the function are taken from the stack and
coerced according to this type-specifier keyword. The
following values are legal:

:word The argument is a 16-bit fixnum.
550 Macintosh Common Lisp Reference

:long The argument is a signed integer.
:ptr The argument is a macptr.

parameter The name of the parameter.
return-type The type of the value returned by the function. The

following values are legal:
:word The returned value is a 16-bit fixnum.
:long The returned value is interpreted as a 32-bit signed

integer and returned as a signed MCL integer.
:ptr The returned value is a macptr.
:void The procedure does not return a value. (Omitting return-

type is equivalent to a return-type of :void.)
doc-string A documentation string.
form The body of the function; zero or more forms that are

evaluated as an implicit progn procedure.

Example

The following example is a simplified version of the scroll-bar-
proc procedure from the file scroll-bar-dialog-items.lisp in
the Library folder. The trap #_TrackControl is documented in Inside
Macintosh.
? (defpascal my-track-proc (:ptr my-control

 :word partCode

 :void)

 (#_SetCtlValue my-control

 (+ (#_GetCtlValue my-control)

 (case partCode

 (20 -1) ;scroll back one line

 (21 1) ;scroll forward one line

 (22 (- *page-height*)) ;scroll back one page

 (23 *page-height*))))) ;scroll forward one page

It could be used as follows:
(if

 (#_TrackControl the-control mouse-point my-track-proc)
 (view-draw-contents w))

In the second calling sequence for defpascal, only a single parameter
is given. When the function is called, the values of the CPU registers are
copied into a record. The values of the record can be set and accessed
with rref and rset (for details, see Chapter 16: OS Entry Points and
Records). The value returned by the function is the pointer to the
record.

An example of the use of defccallable is given in Chapter 17:
Foreign Function Interface
Chapter 15: Low-Level OS Interface 551

Defpascal and Interrupts

In general, defpascal callbacks occur without interrupts. In MCL 4.0
there is an option to enable interrupts during the callback. Usually, you
will want the default without-interrupts behavior for callbacks
from OS entry points, but if you write your own C, Pascal, etc. code that
calls back to MCL, you may wish the callbacks to enable interrupts so
that other MCL processes and event processing can get time during the
callback. The new feature is specified with a :without-interrupts
argument keyword, the argument for which is evaluated at load time.
For example, the following callbacks will execute without interrupts:
(defpascal uninterruptable (:word x :word)
 x)

(defpascal uninterruptable (:word x
 :without-interrupts t
 :word)
 x)

The following callback will execute with interrupts enabled:
(defpascal interruptable (:word x
 :without-interrupts nil
 :word)
 x)
552 Macintosh Common Lisp Reference

Chapter 16:

OS Entry Points and Records

Contents

Entry Points and Records / 555
References to entry points and records / 555

Loading and Calling Entry Points / 556
Calling entry points / 556

Traps in MCL 3.1 / 558
Shared Library Entry Points in MCL 4.0 / 559

Locating Entry Points in Shared Libraries / 560
Locating Shared Libraries / 561
Compile Time / Run Time Entry Location / 561

Defining Traps / 562
Examples of calling entry points / 564
Entry point types and Lisp types / 565

Records / 567
Installing record definitions / 567
The structure of records / 568
Defining record types / 568
Variant fields / 571

Creating records / 572
Creating temporary records with rlet / 572
Creating records with indefinite extent / 574

Accessing records / 576
Getting information about records / 583
Trap calls using stack-trap and register-trap / 586

Low-level stack trap calls / 586
Low-level register trap calls / 588
Macros for calling traps / 589

Notes on trap calls / 594
32-bit immediate quantities / 594
Boolean values: Pascal true and false / 594

This chapter discusses how to make calls to Macintosh OS entry points, and
how to work with Macintosh data structured as Pascal records.
553

You should read this chapter if you are using records or OS entry points. OS
entry points discussed in this chapter are those documented in Inside
Macintosh.

You should be familiar with Chapter 15: Low-Level OS Interface before
reading this chapter.
554 Macintosh Common Lisp Reference

Entry Points and Records

OS Entry Points call procedures in the Macintosh OS, as defined and
discussed in Inside Macintosh. These entry points often require the
allocation of records, areas of Macintosh memory usually stored as
Pascal records. For example, the procedure to draw and fill an oval in a
window requires calling an entry point—calling a Macintosh OS
procedure that knows how to draw and fill an oval. That entry point in
turn requires an area of memory, a record, to store the rectangle that
defines the filled oval.

MCL functions and programs work efficiently with entry points and
records. You can easily access and alter data structures created at run
time (such as windows and event records) as well as Macintosh
resources.

◆ Note: On 68K-based Macintoshes, most OS entry points are
implemented as trap instructions. On PowerPC-based Macintoshes,
they are implemented as shared library entry points. For the most part,
this documentation uses the terms “trap” and “entry point”
interchangeably.

◆ Note: Code that calls external functions needs to be compiled if it is to
run in an application with the compiler excised. Attempting to intrepret
such functions will invoke the compiler, and error if the compiler is not
present.

References to entry points and records

Every Macintosh OS entry point, constant, record, and record field type
is now described in an interface file located in the Interfaces folder
within the Library folder. When the value of *autoload-traps* is
true, information is automatically read from the relevant interface file
when the MCL reader encounters a reference to one of these values. The
definition provided by the interface file describes the arguments and
return values of entry points and can do relevant error checking.

Names of record formats and entry points in MCL correspond to those
in MPW and Inside Macintosh. In MCL, however, calls to the operating
system are indicated by the reader macros number sign–underscore
(#_) or number sign–dollar sign (#$). (See “Loading and Calling Entry
Points” on page 556.)
Chapter 16: OS Entry Points and Records 555

You can define your own record formats with defrecord and your
own trap calls with deftrap. These macros are also described in this
chapter.

Loading and Calling Entry Points

The “Interfaces” folder located in the “Library” folder contains source
files giving definitions of over 2000 Macintosh entry points and records
described in Inside Macintosh.

If you reference a known Macintosh entry point or record and the value
of *autoload-traps* is true (the default), the trap is automatically
loaded. If you want to load an entire interface file, use the function
require-interface:
? (require-interface 'quickdraw)

"QUICKDRAW"

If you use an unusual selection of traps, you can create your own
interface files, containing only those traps you use.

◆ Note: The autoloading mechanism uses the index files in the folder
ccl:library;interfaces;index; to find trap and constant
definitions. If you modify any of the interface files, you must execute
the form (reindex-interfaces) to update the index files.

The format of interface files is slightly different in MCL 3.1 and MCL
4.0. Therefore, each one has its own “Interfaces” folder.

Calling entry points

#_symbol [Reader macro]

Syntax #_symbol

Description If the value of *autoload-traps* is true, the #_ reader macro tries to
load the trap definition of symbol from the appropriate interface file and
interns _symbol in the traps package. For example, #_NewPtr loads
_NewPtr and interns the symbol _NewPtr in the traps package.
556 Macintosh Common Lisp Reference

A call to the entry point is then compiled, according to the definition loaded
from the interface file. The arguments to the entry point are defined in inside
Macintosh.

Error checking is supported by the :errchk keyword. If the first argument to
a entry point call is the keyword :errchk, then the entry point call will
include a call to ResError or MemError when appropriate, and will
otherwise check for a non-zero return value from the system call. Before using
this option, check the entry point definition to make sure it supports this error
reporting mechanism.

#$symbol [Reader macro]

Syntax #$symbol

Description If the value of *autoload-traps* is true, the #$ reader macro tries to
load a constant definition for symbol from the proper interface file. It also
interns $symbol in the traps package. For example, #$WMgrPort loads
the constant $WMgrPort and interns the symbol $WMgrPort in the
traps package.

Since #_ and #$ are reader macros, they are evaluated only at read
time. Therefore, if you include autoloaded symbols in a
macroexpansion, you must use require-trap or require-trap-
constant.

require-trap [Macro]

Syntax require-trap trap-name &rest rest

Description The require-trap macro autoloads a trap whether called at read time
or at macroexpand time.

Arguments trap-name A trap name.
rest A list of other arguments.

Example
? (defmacro draw-string (string start end)

 (let ((pstr (gensym)))

 `(with-pstr (,pstr ,string ,start ,end)

 (require-trap #_DrawString ,pstr))))

DRAW-STRING
Chapter 16: OS Entry Points and Records 557

require-trap-constant [Macro]

Syntax require-trap-constant trap-name

Description The require-trap-constant macro autoloads a constant from the
interface file, whether called at read time or at macroexpand time.

Argument trap-name The name of a trap constant.

reindex-interfaces [Function]

Syntax reindex-interfaces

Description The reindex-interfaces function updates the interface index files.

Traps in MCL 3.1

On the 68K Macintosh and in MCL 3.1, the Toolbox and operating
system reside in ROM. However, to allow flexibility for future
development, application code must be kept free of specific ROM
addresses, so all references to Toolbox and operating system routines
must be made indirectly through a trap dispatch table. To issue a call
in assembly language to the Toolbox or operating system, you use a
trap macro defined in a set of macro files.

When you assemble your program, the macro generates a trap word.
Instruction words beginning with $A do not correspond to valid
machine-language instructions. Instead they augment the MC68000
microprocessor’s native instruction set with additional operations
specific to the Macintosh computer.

An attempt to execute any instruction word beginning with $A causes
a trap to the trap dispatcher, which determines what operation the trap
word stands for, looks up the address of the corresponding routine in
the trap dispatch table, and jumps to the routine.
558 Macintosh Common Lisp Reference

Shared Library Entry Points in MCL 4.0

The vast majority of system calls that were “traps” on the 68K
(unimplemented 68K instructions whose 16-bit opcode was #xAxxx) are
entry points in some shared library on Power Macs. Although MCL 4.0
has a limited ability to compile a system call into a call to a trap via the
Macintosh OS trap emulator, this is almost always undesireable; it
sometimes unvolves unnecessary emulator context switch overhead,
and not all traps can be emulated.

The code that’s invoked by the #_ reader macro in MCL 4.0 looks in a
handful of known system libraries for the symbol that follows the #_
reader macro. If it finds such a symbol, it turns the surrounding form
into a foreign function call to the shared library entry point associated
with that symbol; if the symbol isn’t found, it falls back to the strategy
of treating the call as an emulated 68K trap call, and generates a
compiler warning.

The names of entry points in shared libraries are case-sensitive.
However, MCL hides this characteristic from the programmer by
encoding the case in the deftrap form, and automatically looking it up
when the system code is compiled.

A number of system calls were renamed when the MacOS was moved
from the 68K to the PowerPC. MCL automatically maps these
renamings for you.

There are some traps that appear not to have been moved to the
PowerPC at all, and can only be invoked through the emulator.

There were a small number of high-level “not-in-ROM” system calls
that were not supported by MCL 3.1. Instead, they were compiled into
calls to the corresponding low-level traps. On the PowerPC, both the
high-level and low-level calls are shared library entry points. For
backward compatibility with MCL 3.1, MCL continues to treat the
names of the high-level entries as synonyms for the low-level system
calls.
Chapter 16: OS Entry Points and Records 559

Locating Entry Points in Shared Libraries

The set of shared libraries that the system call expansion code looks in
is referred to as the shared library search path. Initially, the shared
library search path contains entries for “InterfaceLib” (where the vast
majority of OS/ToolBox calls reside), “MathLib” (transcendental
arithmetic), and “ThreadsLib” (the Thread Manager, used to
implement stack groups and processes). If the entry point is not found
in one of these installed libraries, then a number of other libraries are
automatically installed (one at a time) and searched for the entry point.
These additional libraries are “AppleScriptLib”, “ObjectSupportLib”,
“QuickTimeLib”, “DragLib”, “TelephoneLib”, “Translation”,
"ColorPickerLib", “SpeechLib”, “AOCELib”, “QuickDrawGXLib”,
“ColorSync”, “PowerMgrLib”, and “XTNDInterface”.

You can extend the set of libraries searched initially by calling (add-
to-shared-library-search-path libname) where libname is a
case-sensitive string which names the shared library in question. You
must call this function to inform MCL of any additional libraries to
search for entry points. You can also call this function to pre-install a
library that you know your code will be using, to avoid having other
libraries unnecessarily installed as part of the search process.

It is possible for more than one library to contain an entry point with a
given name. When looking for an entry point in a shared library, MCL
simply uses the first library it finds which contains the entry point. This
is not a problem for system calls, which are designed by a single
company and do not contain duplicates. However, it could be a
problem when using shared libraries provided by third parties. For this
reason, deftrap has been extended to allow an entry point to be
associated with a particular library. This specification also improves
compilation speed by obviating the need to search for the entry point in
a series of libraries.

add-to-shared-library-search-path [Function]

Syntax add-to-shared-library-search-path name

Description Adds the library specified by the case-sensitive string name to the library
search path.

Arguments name A string, in which case is significant.
560 Macintosh Common Lisp Reference

remove-from-shared-library-search-path [Function]

Syntax remove-from-shared-library-search-path name

Description Removes the library specified by the case-sensitive string name from the
library search path.

Arguments name A string, in which case is significant.

Locating Shared Libraries

Shared library names do not refer to file names. Shared libraries are
sometimes files, but they may also be stored in an application’s data
fork, in the system file, or even in the ROM. The MacOS provides
mechanisms for locating a shared library given its name.

MCL uses these mechanisms, specifically the GetSharedLibrary
function, passing the name of the shared library desired. This uses the
system’s shared library search path: first it looks in the application’s
data fork, then in the files in the application’s directory, then in the
System Extensions folder, then in the shared library and ROM
registries. Since this is the search path used by all the other applications
on your system, it should almost always find the correct library. One
potential problem is that there’s no way to pass any version information
to GetSharedLibrary, nor is there any way to get version
information or the pathname of the library it finds. Hence, if there is
more than one version of a shared library in the search path, you'll find
the first one.

It is possible to locate a library in a specific location by using
GetDiskFragment and parsing the cfrg resource for library names
and versions. You could then use that to specify which file to use for a
particular library name. However, this technique violates the
abstraction recomended by the OS, and so it should not be necessary.

Compile Time / Run Time Entry Location

When you compile a call to a shared library entry point, the compiled
call encodes the entry point name and the name of the library
containing the entry point. As long as MCL is running, the address of
the entry in the library is also remembered.
Chapter 16: OS Entry Points and Records 561

When compiled code is saved and restarted (using save-
application, or when loading compiled code from compiled files
into a fresh Lisp), the location of the library and the address of the entry
point in the library are forgotten. The first time the code is executed, the
library and address of the entry are again looked up using
GetSharedLibrary. This is the basic mechanism of dynamic linking
using DLLs. For this mechanism to work properly, the versions of the
shared library available at compile-time and run-time must be
compatible.

Defining Traps

The macro deftrap defines the calling sequence of a trap. Arguments
can be explicitly typed so as to override the definition; for example, an
argument may be passed as two words instead of as a single longword.

In MCL 3.1, after performing compile-time type checking on the
arguments, high-level traps expand into stack-trap, register-
trap, or %gen-trap (discussed in “Macros for calling traps” on
page 589).

deftrap [Macro]

Syntax deftrap {trap-name} ([({arg} {mactype})]*) ({return-
place}{mactype}) | nil) {implementation-form}+)

Description The deftrap macro makes trap-name into a symbol for a trap and defines
the behavior of the trap.

Arguments trap-name The name of the trap.
In MCL 3.1, this must be a symbol. In MCL 4.0, it can have
a number of forms, as described below.

arg Any symbol whose keyword is not a record field type.
Type checking on the arguments is performed at compile
time. Run-time type checking on the Lisp data types of the
arguments is also performed if an optimize declaration of
(safety 3) is in effect. Run-time type checking is
always performed on pointer and long arguments.

mactype A record field type. (See “Defining record types” on
page 568.)
562 Macintosh Common Lisp Reference

return-place An argument specifying where the results of the trap call
are returned. The value of return-place is :stack, a
register, or nil, which indicates that no value is returned.

implementation-form
A Lisp form, one subform of which must
 ({trap-kind}{trap-number}{call-arg}*).

trap-kind One of :trap, :stack-trap, :register-trap, or
:no-trap. When trap-kind is :stack-trap, call-arg can
be left off, in which case the args of the deftrap are used
instead. If you specify :trap, deftrap will generate the
correct kind of trap.

trap-number A fixnum, or, in the case of :no-trap, a form to be
executed in lieu of a trap call.

call-arg If present, either a symbol or {register-key} {value}. If
there is no call-arg, ([({arg} {mactype})]*) is used. If
call-arg is a symbol, it must be a symbol from
([({arg} {mactype})]*). Otherwise, any number of
register keys and values may appear.

In MCL 4.0, the trap-name can be any of the following:

symbol-or-string

In both these cases (string symbol-or-string) with the leading underbar
removed is the name that will be used to access the trap from Lisp using
#_ syntax, as well as the name which will be looked up in the shared
libraries.

(macro-name entry-point-name)

Here macro-name (a string or symbol) will be used to access the trap from
Lisp using #_ syntax and library-name is a string naming the shared library
entry point.

(macro-name (shared-library-name))
(macro-name (shared-library-name entry-point-name))

Here macro-name and entry-point-name are as before. In the first form, entry-
point-name defaults to (string macro-name) with the leading underbar
removed. shared-library-name is the name of the shared library in which to
look for entry-point-name.

Examples

In MCL 4.0, the following examples are equivalent. The ones that don’t
explicitly specify the shared-library-name will be looked for in the
libraries in the shared library search path.
(deftrap "_NewPtr" ((bytecount :signed-long))
 (:a0 :pointer)
 (:register-trap 41246 :d0 bytecount))
Chapter 16: OS Entry Points and Records 563

(deftrap (_newptr "NewPtr") ((bytecount :signed-long))
 (:a0 :pointer)
 (:register-trap 41246 :d0 bytecount))

(deftrap ("_NewPtr" ("InterfaceLib"))
 ((bytecount :signed-long))
 (:a0 :pointer)
 (:register-trap 41246 :d0 bytecount))

(deftrap ("_NewPtr" ("InterfaceLib" "NewPtr"))
 ((bytecount :signed-long))
 (:a0 :pointer)
 (:register-trap 41246 :d0 bytecount))

An example that actually uses the renaming is:
(deftrap ("_open" "PBOpenSync")
 ((paramblock (:pointer :paramblockrec)))
 (:D0 :signed-integer)
 (:register-trap 40960 :A0 paramblock))

Additional examples can be found in the interface files provided with
MCL, which use the macro deftrap extensively.

Examples of calling entry points

This section gives several examples of calling entry points. All of these
examples allocate temporary records with rlet, which is used to create
a record for the duration of a body.

The following code creates a new window and draws inside it.

First, create the window.
? (defparameter *w* (make-instance 'window))

Within Lisp, call the PaintRoundRect procedure to draw and fill a
rectangle inside the window. This Inside Macintosh definition of this
procedure is as follows:
PROCEDURE PaintRoundRect (r: Rect; ovalWidth,
 ovalHeight: INTEGER);

The type of the first argument, r, is :rect , so you must define a record
with rlet or make-record. Then call the entry point from within
MCL using #_PaintRoundRect, which corresponds to the
PaintRoundRect procedure.
564 Macintosh Common Lisp Reference

(rlet ((r :rect
 :top 20
 :left 20
 :bottom 80
 :right 60))
 (with-focused-view *w*
 (#_paintroundrect r 30 30)))

A call to the entry point PtToAngle gets a result by passing an
argument by reference:
? (rlet ((angle :integer)
 (r :rect :topleft #@(100 50)
 :bottomright #@(120 70)))
 (with-focused-view *w*
 (#_Framerect r)
 (#_moveto 110 60)
 (#_lineto 150 20)
 (#_PtToAngle r #@(150 20) angle)
 (%get-word angle)))

This entry point call creates a record to hold the result of the call to
StuffHex, which translates a Pascal string into binary data. It creates
another record to call the rectangle required by FillOval, and finally
it draws the oval with the pattern in the window:
? (rlet ((pat :pattern))
 (with-pstrs ((hex-string "1020408102040801"))
 (#_stuffhex pat hex-string)
 (rlet ((r :rect :topleft #@(200 20)
 :bottomright #@(250 100)))
 (with-focused-view *w*
 (#_filloval r pat)))))

Entry point types and Lisp types

When you are calling an entry point, you must know the types of the
arguments. You can determine them by consulting the trap definition
in Inside Macintosh. The types of all arguments is shown at the end of
each chapter.

Table 16-1 lists the MCL equivalents of the most frequently used Pascal
types.
Chapter 16: OS Entry Points and Records 565

■ Table 16-1 Pascal types and their equivalent MCL types

Pascal type Lisp type

array macptr

boolean t or nil

byte fixnum

char Lisp character (#\char)

handle macptr

integer fixnum

longword integer

os-type fixnum, four character string, or symbol with
a four character p-name

point integer

pointer macptr

string macptr

Anything passed by reference (VAR; can be
made with rlet or %stack-block)

macptr

Other records, i.e., a record made with make-
record or rlet

macptr
566 Macintosh Common Lisp Reference

Records

Records can be viewed from two perspectives: how they are stored and
used and how they are passed by Lisp.

Records keep track of blocks of Macintosh memory within Macintosh
Common Lisp. As stored and used, a record is a contiguous structured
block of memory of a specific size, stored on the stack or Macintosh
heap. As passed around by Lisp, a record is a simple pointer to
Macintosh memory, with no formatting or length information.

To use a record, a program must provide a record type. This record type
tells the system how the data at the other end of the pointer should be
interpreted. Your program must keep track of the types of all the
records you create.

Records have no explicit type, so you can map over a single block of
memory in several different ways, as if it were several different types of
record. This is convenient, for example, in the case of a window pointer,
whose first section is a GrafPort record. The system also allows you to
use pointers returned by Macintosh traps as records.

In the following discussion, the word record can mean either a block of
memory or a pointer to memory, depending on the context. For
example, when you allocate a new record with make-record, a block
of memory is allocated on the heap, and a pointer to the block is
returned. For the sake of brevity, this process is described in this way: a
record is allocated and returned.

Installing record definitions

In the Interfaces folder, a subfolder of Library, are source files giving
definitions of many of the Macintosh records described in Inside
Macintosh.

If you reference a known Macintosh record and the value of
autoload-traps is true, the record definition is automatically
loaded.

Other records may be defined with the macro defrecord.
Chapter 16: OS Entry Points and Records 567

The structure of records

A record has an associated set of fields that refer to different portions
of the memory block. A record definition is a template that defines the
fields for a specific type of record.

Each field has a name, a type, and a byte offset into the record. Field
names are used to access portions of a record symbolically. Field types
are used to determine the size of each field and the way the information
in the field is encoded and decoded (for example, a field may itself be a
record and therefore contain subfields). Field offsets indicate the
position of the field inside the record.

Here is an example of a record definition. It has a name, foo, and two
fields, str and array. The field str is a string of length 255 and the
field array is an array of 100 integers:
 (defrecord (foo :handle)

 (str (:string 255))

 (array (:array :integer 100)))

You can access the same portion of a record in different ways by using
variant fields. See “Variant fields” on page 571.

Defining record types

Many standard record types are already defined in the Interface files.
However, you can also define your own record types with defrecord.

defrecord [Macro]

Syntax defrecord record-name &rest slot-descriptions

Description The defrecord macro defines a new record type.

Arguments record-name Either a symbol that will be used to name the type of
record, or a list whose car is the symbol used to name the
record and whose cadr is a keyword that specifies the
default type of storage used for the record. See the note at
the end of this definition on overriding default record
storage.
The package of the symbol used to name the record is
ignored; all record names are converted to the keyword
package.
568 Macintosh Common Lisp Reference

The keyword should be either :pointer or :handle. If
the keyword is :pointer, records of this record type are
allocated and accessed as pointers. If the keyword is
:handle, they are allocated and accessed as handles. If
no keyword is given, the record type is assumed to be
:pointer.

slot-descriptions
One or more slot descriptions. A standard slot description
is a list of the form (name type {option}*).

name The name used to access the field in the record. The name
cannot be variant, which has special meaning (see the
next section, “Variant Fields”).

 type The type of data the field contains; type is used to
determine the field’s length. The type must be one of the
predefined types (see Table 16-2), a previously defined
record type, an array, or a list whose car is the symbol
:string and whose cadr is a fixnum from 1 to 255,
which is used to specify the length of the string.
An array type is of the form (:array type dimensions+),
where type is defined as in this example and dimensions
are constant fixnums:

 (defrecord (foo :handle)

 (str (:string 255))

 (array (:array :integer 100)))

option Zero or more of the following:
:offset number

A fixnum to offset the slot from the beginning of the
record.

:include t-or-nil
A keyword, which can be used only when the slot type is
another record. It indicates whether the fields of the other
record can be accessed directly, as if they were fields of
the record being defined. If the value of this keyword is
nil (the default), they cannot be accessed directly. If the
value is true, they can. In the first slot description, the
value of :include is automatically true.

Examples

Here are two examples of the syntax of defrecord.
? (defrecord PenState
 (:pnLoc point)
 (:pnSize point)
 (:pnMode integer)
 (:pnPat pattern))

This call, one of the calls in the Interface files, creates a record type
called PenState with four slots.
Chapter 16: OS Entry Points and Records 569

? (defrecord foo
 (field1 :integer :default 42)

 (field2 (array :longint 10))

 (field3 (array :byte 5 5))

 (field4 (some-record-type :handle))

 (field5 (:string 255)))

This call creates a new record type called foo. The fourth field of this
record type is stored as a handle. Records stored as handles are less
likely to cause fragmentation of the Macintosh heap, but you must be
careful when using them.

s Important The Macintosh ROM is very strict about whether records are passed to
it by handle or by pointer. It is recommended that you explicitly specify
the storage type by using the:storage keyword in calls to make-
record and rref or by using the href or pref macros.s

MCL records correspond exactly to MPW Pascal packed records, except
that Boolean fields always take up a full byte. Fields that are 2 or more
bytes long always begin at word boundaries (that is, at even memory
locations). Fields that are 1 byte long are padded to 2 bytes if necessary.
See Inside Macintosh for more details on field size.

Table 16-2 lists the predefined record field types and their lengths.

■ Table 16-2 Predefined record field types and their lengths

Lisp type Length in bytes Equivalent to

array 4 pointer

boolean 1

byte 1 unsigned-byte

signed-byte 1

unsigned-byte 1

character 1

handle 4

integer 2 signed-integer

signed-integer 2

unsigned-integer 2
570 Macintosh Common Lisp Reference

Variant fields

You can use variant fields to access the same portion of a record in
different ways. Variant fields allow an area of a record to be mapped to
different sets of fields. For example, you can use variant fields to access
one part of a record as a single longword or as 4 bytes. Variant fields
(like records in general) are useful mnemonic aids and short cuts. The
size of a variant field is equal to the total size of the largest set of fields
in the variant portion.

If a field description contains variant fields, it will have the form
 (:variant ({variant-field1}+)
 ({variant-field2}+)
 ...
 ({variant-fieldN}+))

long 4 signed-long

signed-long 4

unsigned-long 4

longint 4 signed-long

signed-longint 4 signed-long

unsigned-longint 4 unsigned-long

ostype 4

point 4

pointer 4

short 2 signed-integer

signed-short 2 signed-integer

unsigned-
short

2 unsigned-integer

string 4

word 2 unsigned-integer

signed-word 2 signed-integer

unsigned-word 2 unsigned-integer

single-float 4

double-float 8

ptr 4 pointer
Chapter 16: OS Entry Points and Records 571

The section of the record described by the variant may be accessed
through N sets of fields. The size of the variant field is equal to the size
of the largest set of fields.

You can specify an :origin keyword argument for a field. The
keyword :origin simply sets the offset counter.

The following code indicates that a rect record may be accessed either
as two points or as four coordinates:
(defrecord Rect

 (:variant ((top :integer)

 (left :integer))

 ((topleft :point :origin 0)))

 (:variant ((bottom :integer)

 (right :integer))

 ((bottomright :point :origin 4))))

A variant field list can itself use variants.

Creating records

Records may be created temporarily, for example, within a function,
using rlet, or with indefinite extent, using make-record. Records
with indefinite extent must be disposed of explicitly. Temporary
records are much more efficient.

Creating temporary records with rlet

The macro rlet is used when memory needs to be allocated
temporarily.

rlet [Macro]

Syntax rlet ({symbol record-type init-forms*}+) {form}*

Description The rlet macro creates a temporary record on the stack and evaluates
form. The value of the last form is returned. The rlet macro is the most
efficient way to create temporary records.
572 Macintosh Common Lisp Reference

The records are stored on the stack and are therefore ephemeral. When the
evaluation of forms is done, all the records vanish irretrievably and should not
be referenced. (This macro is similar to %stack-block, to which rlet
macroexpands.)

The rlet macro has the same general form as the let macro. For every symbol
a new binding is created. Space is allocated on the stack for a record-type record,
and the record is initialized according to the init-form, which should be pairs of
field-keyword and value. A pointer to the new record is the value of the
corresponding symbol. The forms are evaluated in the resulting environment,
and the value of the last form is returned.

If the value of *autoload-traps* is true, rlet automatically loads the
definition of the record.

Arguments symbol A symbol.
record-type A record type.
init-forms Zero or more initial value forms.
forms Zero or more forms.

Examples

This example of rlet allocates space on the stack for a record r of type
:rect, initializes it with its :topleft and :bottomright values,
and evaluates (#_framerect r). It draws a rectangle into the current
GrafPort, the window foo:
? (setq foo (make-instance 'window))

#<WINDOW "Untitled", #x352819>
? (with-focused-view foo

 (rlet ((r :rect

 :topleft #@(10 10)

 :bottomright #@(100 100)))

 (#_framerect r)))

NIL

The binding is ephemeral; r no longer has a binding after the value of
the last form is returned:
? r

> Error: Unbound variable: R

> While executing: SYMBOL-VALUE

Here is an example of the expansion of rlet.
(rlet ((r :rect :topleft #@(10 10) :bottomright #@(100 100)))

 (#_framerect r))

macroexpands to
(%stack-block ((r 8))

 (ccl::%put-point r 655370 0)

 (ccl::%put-point r 6553700 4)
Chapter 16: OS Entry Points and Records 573

 (traps:_framerect r))

and then to
(let* ((r (ccl::%new-ptr 8)))

 (declare (dynamic-extent r))

 (ccl::%put-point r 655370 0)

 (ccl::%put-point r 6553700 4)

 (traps:_framerect r))

If you use the rlet macro to allocate a record with :storage
:handle, it acts as though you overrode the allocation to :storage
:pointer.

s Important If you override the default storage with :storage :pointer, you
should use the pointer-specific macros pref and pset to access the
record (or be careful to always specify :storage :pointer in rref
and rset). Doing otherwise may cause
a crash. s

The record-type may also be a record field type. In that case, rlet
allocates enough storage for one of the specified record fields. For
example, the call
 (rlet ((p :point))...)

allocates enough storage to hold a point (that is, 4 bytes). When you
allocate storage using record field types, you cannot specify the initial
contents.

Creating records with indefinite extent

When you want to return a record from a function, you must create a
record that has indefinite extent. The memory this record takes up is not
subject to automatic garbage collection; it uses space in the Macintosh
heap until it is explicitly disposed of.

Some records, such as windows, must be created and initialized by
specific Toolbox routines. Such records should be created not by using
make-record but by using the appropriate Toolbox traps.

The following macro is used to create records with indefinite extent.

make-record [Macro]

Syntax make-record record-name &rest initforms
574 Macintosh Common Lisp Reference

Description The make-record macro allocates space in the Macintosh heap for a
record record-name and returns a pointer or a handle to it. This record has
indefinite extent (as opposed to blocks allocated with %stack-block or
rlet).

Arguments record-name Either a symbol that will be used to name the type of
record, or a list whose car is the symbol used to name the
record and whose cadr is a keyword that specifies the
default type of storage used for the record. The keyword
should be one of the following:

:storage A keyword used to override the default storage method
used by the record. If specified, this should be :pointer
or :handle.

s Important It is recommended that you always specify the storage
explicitly, rather than relying on the default. A crash is
very likely if a handle is used as a pointer or vice versa. s

:clear A keyword determining how record-name is cleared. If the
value of :clear is true, clears the entire record, using an
efficient operating system call to allocate and clear the
pointer or handle simultaneously.

:length A fixnum. Used to override the default size used by the
record. There is no error checking to see whether
:length is long enough.

initforms A list of keywords and values used to initialize the record.

dispose-record [Macro]

Syntax dispose-record record &optional storage-type

Description The dispose-record macro disposes of record and returns nil.

If record contains pointers to other records, dispose-record does not
automatically dispose of these other records, since other pointers to those
records may exist.

Any Macintosh Toolbox data structure that is allocated using a special trap
(such as regions and controls) also needs to be deallocated using a special trap,
rather than by dispose-record. In general, if you did not use make-
record to create the data structure, you should not dispose of it with
dispose-record.

The dispose-record macro has an effect only if record is a pointer or a
handle to a Macintosh Memory Manager block.

Arguments record A record.
Chapter 16: OS Entry Points and Records 575

storage-type The type of the record being disposed. This may be either
a record type or storage (:pointer or :handle).
Supplying this argument allows the macro to expand into
more efficient code.

Accessing records

The following macros and functions are used to access and modify
records.

href [Macro]

Syntax href handle accessor

Description The href macro returns the contents of the specified field of handle. This
macro is the most efficient way to access the fields of a record.

If the value of *autoload-traps* is true, href automatically loads the
record definition.

An error is signaled at macroexpansion time if an attempt is made to get a
handle to a record and the surrounding record is stored as a pointer.

The href macro is very efficient. It expands into a simple call to a low-level
memory-accessing function that is in turn compiled inline. Try experimenting
with href expansions to see how this macro works.

The macro href may be combined with setf to modify a field of a record.

Arguments handle A handle to a record.
accessor A form that describes which record type and field to

access; accessor has the form record-type{.field}+. An array
reference has the form (record-type {.field}+ indices*), for
example:

 (defrecord (foo :handle)

 (str (:string 255))

 (array (:array :integer 100)))

 (href f (foo.array 42))

record-type A previously defined record type.
576 Macintosh Common Lisp Reference

field A field in a record of type record-type. If field is also a
record type, its fields may be accessed by appending an
additional period and field name. If that field is a record
type, the process can continue. There can be any number
of fields. Every one but the last must be a record type; the
last one may be a record type, but is not required to be.
In cases where the first field of record-type is also a record,
then that field’s fields may be referred to as if they were
direct fields of record-type. For example, a QuickDraw
GrafPort is the first field of a windowRecord record, so
the GrafPort’s portrect can be abbreviated from
windowRecord.grafport.portrect to
windowRecord.portrect.
If the final field of accessor is not a record, then the actual
field value is returned. If the final field of accessor is itself a
record, then a pointer to that record is returned.
If you do not specify enough array indices, Macintosh
Common Lisp returns a pointer to the location in memory
where the subarray would begin.

pref [Macro]

Syntax pref pointer accessor

Description The pref macro returns the contents of the specified field of pointer. This
macro is the most efficient way to access the fields of a record.

If the value of *autoload-traps* is true, pref automatically loads the
record definition.

An error is signaled at macroexpansion time if the surrounding record is
stored as a handle.

The pref macro is very efficient. It expands into a simple call to a low-level
memory-accessing function that is in turn compiled inline. Try experimenting
with pref expansions to see how this macro works.

The macro pref may be combined with setf to modify a field of a record.

Arguments pointer A pointer to a record.
accessor A form that describes which record type and field to

access; accessor has the form record-type{.field}+. An array
reference has the form (record-type {.field}+ indices*), for
example:

 (defrecord (foo :pointer)

 (str (:string 255))

 (array (:array :integer 100)))
Chapter 16: OS Entry Points and Records 577

 (pref f (foo.array 42))

record-type A previously defined record type.
field A field in a record of type record-type. If field is also a

record type, its fields may be accessed by appending an
additional period and field name. If that field is a record
type, the process can continue. There can be any number
of fields. Every one but the last must be a record type; the
last one may be a record type, but is not required to be.
In cases where the first field of record-type is also a record,
then that field’s fields may be referred to as if they were
direct fields of record-type. For example, a QuickDraw
GrafPort is the first field of a windowRecord record, so
the GrafPort’s portrect can be abbreviated from
windowRecord.grafport.portrect to
windowRecord.portrect.
If the final field of accessor is not a record, then the actual
field value is returned. If the final field of accessor is itself a
record, then a pointer to that record is returned.
If you do not specify enough array indices, Macintosh
Common Lisp returns a pointer to the location in memory
where the subarray would begin.

rref [Macro]

Syntax rref record accessor &key :storage

Description The rref macro returns the contents of the specified field of record. It
determines the storage type of record (i.e. whether it is a pointer or handle)
by checking the default storage type of the record definition. However,
because records sometimes do not use the default storage type (e.g. a
dereferenced handle), this operation is less safe than pref or href. For
that reason, href and pref are recomended over rref.

If the value of *autoload-traps* is true, rref automatically loads the
record definition.

An error is signaled at macroexpansion time if an attempt is made to get a
pointer to a record and the surrounding record is stored as a handle. If this is
desired, use a with-dereferenced-handles form around the call and
specify :storage to be :pointer. Such a pointer to a record within a handle
is valid for the duration of with-dereferenced-handles.

The rref macro is very efficient. It expands into a simple call to a low-level
memory-accessing function that is in turn compiled inline. Try experimenting
with rref expansions to see how this macro works.

Combined with setf, rref is equivalent to rset.

Arguments record A pointer or handle to a record.
578 Macintosh Common Lisp Reference

accessor A form that describes which record type and field to
access; accessor has the form record-type{.field}+. An array
reference has the form (record-type {.field}+ indices*), for
example:

 (defrecord (foo :handle)

 (str (:string 255))

 (array (:array :integer 100)))

 (rref f (foo.array 42))

 record-type A previously defined record type.
 field A field in a record of type record-type. If field is also a

record type, its fields may be accessed by appending an
additional period and field name. If that field is a record
type, the process can continue. There can be any number
of fields. Every one but the last must be a record type; the
last one may be a record type, but is not required to be.
In cases where the first field of record-type is also a record,
then that field’s fields may be referred to as if they were
direct fields of record-type. For example, a QuickDraw
GrafPort is the first field of a windowRecord record, so
the GrafPort’s portrect can be abbreviated from
windowRecord.grafport.portrect to
windowRecord.portrect.
If the final field of accessor is not a record, then the actual
field value is returned. If the final field of accessor is itself a
record, then a pointer to that record is returned.
If you do not specify enough array indices, Macintosh
Common Lisp returns a pointer to the location in memory
where the subarray would begin.

:storage The storage method used for the record. It should be
:pointer or :handle. If omitted, the default storage
type for the specified record type is used. It is
recommended that you always explicitly specify the
storage type.

s Important The storage type used with make-record when a record is created
must be the same as the storage type specified by any calls to rref or
rset for that record. A crash is very likely if a handle is referenced as a
pointer or vice versa. s

Examples

Here are some examples of using rref:
(rref my-rect :rect.top)
(rref wptr :windowRecord.portrect.bottomright)
(rref tePtr :terec.viewrect.left :storage :pointer)
(rref my-control :control.controlvalue)
Chapter 16: OS Entry Points and Records 579

rset [Macro]

Syntax rset record accessor value &key :storage

Description The rset macro sets the value of a field in a record. To ensure that the
right storage type is used, it may be preferable to use pref or href with
setf, rather than rset.

If the value of *autoload-traps* is true, rset automatically loads the
record definition.

The rset macro is very efficient. It expands into a simple call to a low-level
memory-accessing function that is in turn compiled inline. Try expanding
rset to see how it works.

Combined with setf, rref is equivalent to rset.

Arguments record A pointer or handle to a record.
accessor A form that describes which record type and field to set.

For a complete description of record accessors, see rref.
value The new value to store in the field. If the final field of

accessor is a record, value must also be a record (either a
handle or a pointer) that is copied into the appropriate
field of record.
Attempting to put a new value into an underspecified
array reference gets a run-time error.

:storage The storage method used for the record. It should be
either :pointer or :handle. If omitted, the default
storage type for the specified record type is used. It is
recommended that you always explicitly specify the
storage type.

s Important The storage type used with make-record when a record
is created must be the same as the storage type specified
by any calls to rref or rset for that record. A crash is
very likely if a handle is referenced as a pointer or vice
versa. s

Examples
(rset wptr :window.portrect.topleft #@(100 200))
(rset my-rect :rect.left -10)
(rset teptr :terec.viewrect.top 50 :storage :pointer)
(rset my-control :control.controlvalue 200)
580 Macintosh Common Lisp Reference

raref [Macro]

Syntax raref record array-descriptor &rest indices

Description The raref macro accesses an array inside a record. If raref is not passed
enough indices, it returns a pointer to the place in memory indicated by
the indices you have passed. This macro operates on that place in memory
and returns the contents of the specified field of the specified record.

This macro cannot access arrays in handles. The handle must be dereferenced
before it is passed to raref.

Arguments record A pointer to a record.
array-descriptor

A description of the type and dimensions of the array, of
the form (type {dimension}*).

indices A set of indices to a location in memory.

Example

Assume that you have a record type foo.
(defrecord foo
 (field1 :integer :default 42)

 (field2 (array :longint 10))

 (field3 (array :byte 5 5))

 (field4 (some-record-type :handle))

 (field5 (:string 255)))

The following three expressions are equivalent:
(rref ptr (foo.field3 2 4))

(raref (rref ptr foo.field3) (:byte 5 5) 2 4)

(raref (rref ptr (foo.field3 2)) (:byte 5) 4)

rarset [Macro]

Syntax rarset record value array-descriptor &rest indices

Description The rarset macro sets the value of an array index inside a record and
returns the new contents.

Arguments record A pointer to a record.
value The new value of the contents of the specified field.
array-descriptor

A description of the type and dimensions of the array, of
the form (type {dimension}*).

indices A set of indices to a location in memory.
Chapter 16: OS Entry Points and Records 581

clear-record [Macro]

Syntax clear-record record &optional storage-type

Description The clear-record macro clears record and returns nil.

Arguments record A record.
storage-type The type of the record being cleared. This may be either a

record type or storage (:pointer or :handle).
Supplying this argument allows the macro to expand into
more efficient code. If specified, the storage must match
the storage given to or defaulted by make-record;
otherwise, it may cause a crash.

copy-record [Macro]

Syntax copy-record source-record &optional record-type dest-record

Description The copy-record macro copies all of the fields of source-record (which
should be of type record-type) into dest-record and returns dest-record.

Arguments source-record A record of type record-type.
record-type Any previously defined record type.

If the default storage for source-record has been
overridden, you should not specify record-type as well. If
you specify record-type, then source-record and dest-record
must have been allocated with the default storage. No
error checking is performed.
If dest-record requires a value but record-type does not, give
record-type the value nil.

dest-record A record of type record-type, if record-type is supplied; if
not, a record of the same storage type as source-record.
If dest-record is not specified, a new one is allocated. If dest-
record is specified, copy-record correctly copies the
contents of source-record into dest-record, even when the
storage types of source-record and dest-record are different.

get-record-field [Function]

Syntax get-record-field record record-type field-name
582 Macintosh Common Lisp Reference

Description The get-record-field function returns the value of the field-name field
of record. The get-record-field function is much less efficient than the
rref macro. It should be used only when a function (rather than a macro)
is needed, for example, when the record type or field name is not known
at compile time.

Unlike the macros listed in this chapter, get-record-field needs access to
record definitions at run time.

Arguments record A record.
record-type Any record type, given as a keyword.
field-name The field of the record to be accessed, given as a keyword.

set-record-field [Function]

Syntax set-record-field record record-type field-name value

Description The set-record-field function sets the value of the field-name field of
record and returns nil. The set-record-field function is much less
efficient than the rset macro. It should be used only when a function
(rather than a macro) is needed, for example, when the record type or field
name is not known at compile time.

Unlike the macros listed in this chapter, set-record-field needs access to
record definitions at run time.

Arguments record A record.
record-type Any record type, given as a keyword.
field-name The field of the record to be accessed, given as a keyword.
value The new value to be placed in the field.

Getting information about records

The following functions give information on records. They are
provided primarily for use during development and debugging of
programs that use records.

record-types [Variable]

Description The *record-types* variable contains a list of all the types of records
that are currently defined in the MCL environment.
Chapter 16: OS Entry Points and Records 583

mactypes [Variable]

Description The *mactypes* variable contains a list of all the field types for use in
records. (Note that this list does not include record types themselves,
which can also be used as field types.)

find-record-descriptor [Function]

Syntax find-record-descriptor record-type &optional errorp autoload

Description The find-record-descriptor function returns the record descriptor
of record-type.

Arguments record-type A keyword naming a record type.
errorp An argument determining whether an error is signaled if

the value of this argument is true and record-type is not a
valid record type. The default value is true.

autoload An argument determining whether to load record-type.
The default is true.

find-mactype [Function]

Syntax find-mactype mactype &optional errorp autoload

Description The find-mactype function returns the mactype descriptor of mactype.

Arguments mactype A keyword naming a mactype.
errorp An argument determining whether an error is signaled if

the value of this argument is true and mactype is not a
valid record type. The default value is true.

autoload An argument determining whether to load mactype. The
default is true.

record-length [Macro]

Syntax record-length record-type

Description The record-length macro returns an integer representing the length of
record-type.

Argument record-type A keyword naming a record type.
584 Macintosh Common Lisp Reference

record-fields [Function]

Syntax record-fields record-type

Description The record-fields function returns a list of the fields in
record-type.

Argument record-type A keyword naming a record type.

record-info [Function]

Syntax record-info record-type &optional error-p

Description The record-info function returns a list of the offset, type, and length of
each field in record-type.

Arguments record-type A keyword naming a record type.
error-p An argument specifying the behavior of the function if

record-type does not name a record type. If this parameter
is specified and true, record-info signals an error;
otherwise it returns nil.

field-info [Function]

Syntax field-info record-type field-name

Description The field-info function returns the offset, type, and length of the field
field-name of record-type.

Arguments record-type A keyword naming a record type.
field-name A field name.

print-record [Function]

Syntax print-record record record-type &optional currlevel

Description The print-record function prints the values of the fields of record of
type record-type. No values are returned.

The print-record function uses the values of *print-length* and
print-level.

Arguments record A record.
Chapter 16: OS Entry Points and Records 585

record-type Any record type, given as a keyword.
currlevel The current print level. The default is 0.

handle-locked-p [Function]

Syntax handle-locked-p handle

Description The handle-locked-p function returns t if handle is locked, nil if it is
not.

Trap calls using stack-trap and register-trap

Most older Macintosh traps accept arguments either on the stack or in
registers, but not in both places. Some newer traps accept arguments
through both. In general, the operating system traps are register based
and the Toolbox traps are stack based, but there are exceptions.

Within a single trap call, some arguments are passed as immediate
values and some are passed by reference (that is, a pointer to the value
is passed). In general, data 4 bytes long or less is passed by value, and
data longer than 4 bytes is passed by reference. Check Inside Macintosh
for the calling sequences of particular traps. Arguments passed by
reference (Pascal VAR parameters) may be modified by the trap.

In MCL 3.1, trap calls can include explicit specifications of where the
arguments should be placed, and where the return value should be
retrieved from. This information is already encoded in the trap
definition, so it is usually not necessary to specify it in the trap call.

Low-level stack trap calls

Here is the general format of a stack trap call.

_TrapName [Macro]

Syntax _TrapName {type-keyword argument}* [return-value-keyword]
586 Macintosh Common Lisp Reference

Description The arguments are evaluated, coerced according to type-keyword, and
passed as the arguments to the trap.

Arguments _TrapName The name of the trap.
type-keyword A keyword signifying the type of coercion to be

performed on the corresponding argument. Possible type-
keywords are :word, :long, :ostype, :ptr, and :d0.
The keywords operate on the subsequent argument
according to the following list.

 :word This keyword causes argument to be passed as a
16-bit word. Arguments passed as words should be
fixnums; it is an error if argument has more than
16 significant bits.

 :long This keyword causes argument to be passed as a
32-bit longword, and is equivalent to :ostype, next.

 :ostype This keyword causes argument, as a four-character string
or symbol with a four-character print name, to be passed
as a 32-bit value (8 bits for each of the characters); os-types
are used as identifiers by the Resource Manager, Scrap
Manager, and other parts of the Macintosh Operating
System.

 :ptr This keyword causes argument to be passed as a
32-bit macptr.

 :d0 This keyword causes argument to be passed in the d0
register.

 :boolean This keyword causes argument to be passed as a Boolean
value.

argument An argument to be passed to the stack. As noted
previously, argument should evaluate to 32-bit values or
to macptrs to data on the Macintosh heap or the stack.

return-value-keyword
Indicates the type of value returned by the trap. If return-
value-keyword is not supplied, :novalue is assumed. The
following keywords are recognized:

 :word A 16-bit result is read from the stack, sign-extended, and
returned as a signed Lisp integer.

 :long A 32-bit result is read from the stack and returned as a
signed Lisp integer.

 :ptr A 32-bit result is returned from the stack as a macptr.
 :novalue The Macintosh trap does not return a value. The Lisp call

returns nil.
 :boolean A Boolean value is returned from the stack.

Examples

This form calls the trap FrameRoundRect with three arguments: a
pointer and two words. The value nil is returned.

? (let ((oval-width 12)
Chapter 16: OS Entry Points and Records 587

 (oval-height 8))
 (%stack-block ((my-rect 8)) ;rectangles are 8 bytes

 (%put-word my-rect 12 0) ;top=12

 (%put-word my-rect 40 2) ;left=40

 (%put-word my-rect 32 4) ;bottom=32

 (%put-word my-rect 80 6) ;right=80

 (_FrameRoundRect:ptr my-rect

 :word oval-width

 :word oval-height)))

The following two forms are equivalent, although the first is much
easier to read:
? (_GetResource :ostype "STR#" ;ASCII "STR#"

 :word 15 ;resource number 15

 :ptr) ;return value is pointer

? (_GetResource :word #x5223 ;ASCII "R#"

 :word #x5354 ;ASCII "ST"

 :word 15 ;resource number 15

 :ptr) ;return value is pointer

Note that in the second form, the components of the resource type are
pushed in reverse order so that they will be in the correct order on the
stack.

Low-level register trap calls

Here is the general format of a register trap call.

_TrapName [Macro]

Syntax _TrapName [:check-error]{register-keyword argument}* [return-
register-keyword]

Description The arguments are evaluated, coerced according to register-keyword, and
passed as the arguments to the trap.

Arguments _TrapName The name of the trap.
588 Macintosh Common Lisp Reference

:check-error
A symbol. If this symbol appears as the first argument to
a register trap, then Macintosh Common Lisp signals an
error if the trap returns a negative value in register d0.
Before using :check–error, make sure that the trap in
question uses this error-signaling protocol.

register-keyword
A keyword that specifies the register that holds the
subsequent argument.

argument An argument to be passed to the register. Arguments are
evaluated in left-to-right order and placed in registers
according to the register-keywords. Arguments to be
placed in data registers should be 32-bit values.
Arguments placed in address registers are not coerced in
any way and should be macptrs.

return–register-keyword
A keyword that specifies which register will hold the
value returned by the trap (if any). Recognized register
keywords are :a0 through :a6 and :d0 through :d7. If
return-register-keyword is not supplied, then nil is
returned. Values returned from a data register are
returned as 32-bit values. Values are returned from an
address register as macptrs. There is no facility for
returning multiple values from register traps.

Example

In this example, upon completion my-pointer holds a pointer to a
2000-byte block of memory on the current Macintosh heap. If the
memory cannot be allocated, a Lisp error is signaled.
(setq my-pointer (_newptr :check-error
 :d0 2000
 :a0))

Macros for calling traps

The forms stack-trap, register-trap, and %gen-trap provide a
generalized mechanism for calling Macintosh traps.

In MCL 4.0, these macros can be used to call traps through the 68K
emulator.
Chapter 16: OS Entry Points and Records 589

stack-trap [Macro]

Syntax stack-trap trap-number {trap-keyword argument}*
[return-value-keyword]

Description The stack-trap macro expands into an efficient low-level system call to
the stack.

Arguments trap-number A value that evaluates to a 68000 A-trap instruction.
These can be found in Inside Macintosh. If trap-number is
specified as a compile-time constant expression, the trap
call can be open-coded by the compiler.

type-keyword A value that signifies the type of coercion to be performed
on the corresponding argument. The keywords operate on
the subsequent argument according to the following list.

 :word A keyword that causes argument to be passed as a 16-bit
word. Arguments passed as words should be fixnums; it
is an error if argument has more than 16 significant bits.

 :long A keyword that causes argument to be passed as a 32-bit
longword.

 :ostype A keyword that causes argument, a four-character string
or a symbol with a four-character print name, to be
passed as a 32-bit value (8 bits for each of the characters);
ostypes are used as identifiers by the Resource Manager,
Scrap Manager, and other parts of the Macintosh
Operating System.

 :ptr A keyword that causes argument to be passed as a macptr.
 :d0 A keyword that causes argument to be passed in the D0

register.
 :boolean A keyword that causes argument to be passed as a Boolean

value.
argument An argument to be passed to the stack. As noted

previously, argument should evaluate to 32-bit values or
to macptrs to data on the Macintosh heap or the stack.

:trap-modifier-bits bitmask
A sequence. Anywhere that a type-keyword/argument pair
may appear, the sequence :trap-modifier-bits bitmask
is also allowed. The :trap-modifier-bits specifier
causes the associated bitmask to be logical-ored with the
value of _TrapName and the resulting value used as the
trap number. The placement of any :trap-modifier-
bits forms in the argument list is not significant.

return-value-keyword
Indicates the type of value returned by the trap. If return-
value-keyword is not supplied, :novalue is assumed. The
following keywords are recognized:
590 Macintosh Common Lisp Reference

 :word A keyword that causes a16-bit result to be read from the
stack, sign-extended, and returned as a signed Lisp
integer.

 :long A keyword that causes a 32-bit result to be read from the
stack and returned as a signed Lisp integer.

 :ptr A keyword that causes a 32-bit result to be returned from
the stack as a macptr.

 :novalue A keyword that causes no value to be returned from the
Macintosh trap. The Lisp call returns nil.

 :boolean A Boolean value is returned.

register-trap [Macro]

Syntax register-trap [:check-error] trap-number {register-keyword
argument}* [return-register-keyword]

Description The register-trap macro expands into an efficient low-level system
call to the register.

Arguments :check-error
Signals an error if the trap returns a negative value in
register d0.

trap-number Evaluates to a 68000 A-trap instruction. These
instructions can be found in Inside Macintosh. If
trap-number is specified as a compile-time constant
expression, the trap call can be open-coded by the
compiler.

register-keyword
Specifies the register that holds the subsequent argument.
Recognized register keywords are :a0 through :a6 and
:d0 through :d7.

argument An argument to a register call. Arguments are evaluated
in left-to-right order and placed in registers. Arguments
to be placed in data registers should be 32-bit values.
Arguments placed in address registers should be
macptrs.

:trap-modifier-bits bitmask
Anywhere that a register-keyword/argument pair may
appear, the sequence :trap-modifier-bits bitmask is
also allowed. The :trap-modifier-bits specifier
causes the associated bitmask to be logical-ored with the
value of _TrapName and the resulting value used as the
trap number. The placement of any :trap-modifier-
bits forms in the argument list is not significant.
Chapter 16: OS Entry Points and Records 591

return-register-keyword
Specifies which register holds the value returned by the
trap (if any). Recognized register keywords are :a0
through :a6 and :d0 through :d7.

Examples

Here is an example of the use of a register-based trap call with :trap-
modifier-bits.The trap instruction _NewPtr has #x0200 logical-
ored into it, causing the ROM to zero out the contents of the newly
created pointer.

? (defconstant #$trap-clear-bitmask #x0200)

#$TRAP-CLEAR-BITMASK

? (_NewPtr :trap-modifier-bits #$trap-clear-bitmask

 :d0 10 :a0)

#<A Mac Zone Pointer Size 10 #x65F9A>

The following forms are equivalent to the previous form:
(register-trap _newptr :trap-modifier-bits 512 :d0 10 :a0)

(register-trap (logior _NewPtr 512) :d0 10 :a0))

Placement is not significant; this call is equivalent to any of the
preceding ones.
(_NewPtr :d0 10 :trap-modifier-bits #$trap-clear-bitmask :a0)

%gen-trap [Function]

Syntax %gen-trap trap {type-keyword argument}* [:return-block pointer |
return-value-keyword]

Description The %gen-trap function executes a low-level system call to a trap with
parameters on the stack or in registers. This function is not available in
MCL 4.0.

It returns a value according to :return-block or return-value-keyword. If the
:return-block keyword is present, %gen-trap returns nil. If it is not
present, %gen-trap returns the value appropriate for return-value-keyword.

The compiler open-codes this function.
Arguments trap A trap call to a trap word in the range $A000-$AFFF.
592 Macintosh Common Lisp Reference

type-keyword A keyword that indicates what type of coercion to
perform on the subsequent argument and where to place
the argument. The possible values of type-keyword are the
following arguments:

 :word The argument parameter (which should be a fixnum) is
truncated to 16 bits, and the resulting word value is
pushed on the stack.

 :long An object coercible to a 32-bit immediate quantity. The
resulting longword value is pushed on the stack.

 :ptr The argument parameter is pushed on the stack as a
macptr.

 :d0–:d7 An object coercible to a 32-bit immediate quantity. The
resulting longword value is placed in the indicated data
register.

 :a0–:a4 The argument parameter should be a macptr. Its address is
put in the indicated address register.

 :boolean This keyword causes argument to be passed as a Boolean
value.
The stack-based arguments are pushed on the stack in the
order in which they appear in the call.

:return-block
If this keyword appears in a trap call, it should be
followed by a pointer to a block of memory where the
returned values are placed. This mechanism lets a trap
return values from multiple registers and positions on the
stack. If this keyword is present, %gen-trap returns nil.

pointer A pointer.
return-value-keyword

Indicates the type of value the function returns if
:return-block is not present. If the value of return-
value-keyword is not supplied, :novalue is assumed. The
following keywords are recognized:

 :word A 16-bit result is read from the top of the stack, sign-
extended, and returned as a signed Lisp integer.

 :long A 32-bit result is read from the top of the stack and
returned as a signed Lisp integer.

 :ptr A 32-bit result is read from the top of the stack and
returned as a macptr.

 :d0-:d7 The value of the indicated data register is returned as a
signed Lisp integer.

 :a0-:a4 The value of the indicated address register is returned as
a macptr.

 :boolean A Boolean value is returned.
 :novalue No value is returned and the trap call returns nil.
Chapter 16: OS Entry Points and Records 593

Notes on trap calls

The following sections discuss 32-bit immediate quantities and Boolean
true and false values.

32-bit immediate quantities

When interfacing to the Macintosh ROMs, it is necessary to be able to
specify 32-bit immediate quantities. These quantities are used to
represent numerical values. When viewed as a sequence of 4
consecutive bytes, they are sometimes used to denote os-types.

The following Lisp data types may be mapped to 32-bit values in
contexts where a trap or memory-access primitive requires a 32-bit
immediate quantity:

■ Any fixnum. Fixnums use only the low 29 bits (in MCL 3.1) or 30 bits
(in MCL 4.0).

■ Any other integer. The 32 least significant bits of the integer are used.
It is an error to pass an integer larger than 32 bits, but the error is not
detected.

■ A character of type base-character. The 32-bit value of the
character code is used as the value.

■ A string whose length is four characters. Macintosh Common Lisp
views such a string as a sequence of 4 bytes; this allows specifying a 32-
bit os-type.

■ A symbol whose print name is a string whose length is four characters.

The constants nil and t are not acceptable as arguments to functions
(such as %put-long) that require a 32-bit value.

Boolean values: Pascal true and false

Pascal parses Boolean values as words (2 bytes) with bit 8 set.
Macintosh Common Lisp automatically converts between this
representation and the MCL values nil and t. Thus,
(stack-trap _button :boolean)

is equivalent to
(logbitp 8 (stack-trap _button :word))

and
594 Macintosh Common Lisp Reference

(stack-trap foo :boolean x)

is equivalent to
(stack-trap foo :word (if x -1 0))
Chapter 16: OS Entry Points and Records 595

596 Macintosh Common Lisp Reference

597

Chapter 17:

Foreign Function Interface

Contents

Accessing Foreign Code in MCL 4.0 and 3.1 / 598
Foreign Code in MCL 4.0 / 598

Defining foreign code entry points / 598
Foreign Code in MCL 3.1 / 600

Using the MCL 3.1 foreign function interface / 600
High-level Foreign Function Interface operations / 600

Argument specifications / 604
Result flags / 608
A Short example / 609

Low-level functions / 610
Calling Macintosh Common Lisp from foreign functions / 613
Extended example / 615

This chapter describes Macintosh Common Lisp’s Foreign Function Interface
(FFI), which permits calls from within Macintosh Common Lisp to functions
written in C, Pascal, assembly language, and other languages. Such functions
are called foreign functions. Foreign functions can in turn make calls back to
Macintosh Common Lisp.

You should read this chapter if you plan to include calls to foreign functions
within Macintosh Common Lisp.

You should also be familiar with MPW object files, which are documented in
MPW: Macintosh Programmer’s Workshop Development Environment.

Accessing Foreign Code in MCL 4.0 and 3.1

The mechanisms used to access foreign code in MCL 4.0 and 3.1 are
quite different.

In MCL 4.0, access to foreign code is quite simple. The foreign code
must be available as a shared library. The entry points of this library are
accessed in exactly the same way as Macintosh OS entry points.

In MCL 3.1, foreign code must be available as an MPW object-code file.
This file is linked into MCL, and entry points to it are defined.

Foreign Code in MCL 4.0

MCL searches for foreign code libraries using exactly the same search
path that it uses for Macintosh OS libraries.

Defining foreign code entry points

You can use deftrap to define the entry points for shared libraries
created from your own or third-party code, but doing so has a few
drawbacks. deftrap always defines symbols in the traps package, so
if any of your entry points have the same name as system calls or entry
points from other shared libraries, you will have to rename them
appropriately. Also, deftrap requires a body, which will serve no
purpose in the entry points. (The body could always be specified as
(:no-trap nil) or some such, but this is just extra work.)

define-entry-point automatically generates body code that
signals an error at run-time if the entry point was not found at compile
time.

define-entry-point [Macro]

Syntax define-entry-point name arglist
 ({return-place}{mactype}) | nil))
598 Macintosh Common Lisp Reference

Description The define-entry-point macro defines name in the current package as
an entry point to a shared library.

Arguments name The name of the entry point. The syntax is as for
deftrap. In particular, the name can specify the library
in which the entry point will be found.

arglist The arglist is as for deftrap.

return-type Any valid mactype.

(define-entry-pointname arglist
 return-type)

Unlike deftrap, all symbols are read in the current package. Like
deftrap, the defined macro is exported from that package.

The following are equivalent. They all define a macro named newptr
that invokes the “NewPtr” entry point in the “InterfaceLib” library.
(define-entry-point “NewPtr" ((bytecount :signed-long))
 :pointer)

(define-entry-point (newptr "NewPtr")
 ((bytecount :signed-long))
 :pointer)

(define-entry-point ("NewPtr" ("InterfaceLib"))

 ((bytecount :signed-long))
 :pointer)

(define-entry-point ("NewPtr" ("InterfaceLib" "NewPtr"))

 ((bytecount :signed-long))
 pointer)

To use the macro defined by one of the forms above, you could write:
(newptr 5)
Chapter 17: Foreign Function Interface 599

Foreign Code in MCL 3.1

The remainder of this chapter describes how to access foreign code in
MCL 3.1. These facilities can also be used to access 68K object code in
MCL 4.0, through the 68K emulator.

Using the MCL 3.1 foreign function interface

To use foreign functions from Macintosh Common Lisp, do the
following:

■ Write and compile the foreign functions using a compiler that
produces MPW object files.

■ Run Macintosh Common Lisp and load the Foreign Function Interface
files.

■ Load the MPW object files with the function ff-load.

■ Define an interface for each foreign function you wish to call. (This is
done with defffun, deffcfun, or deffpfun.)

■ Call the foreign functions from Macintosh Common Lisp using MCL
syntax.

A call from Macintosh Common Lisp to a foreign function looks exactly
like a call to another MCL function. The MCL function that makes the
call (and, for that matter, the programmer) doesn’t even need to know
that the function called was written in a different language.

To use the Foreign Function Interface you must load the file ff.fasl,
included in the MCL Library folder, or execute the expression
? (require "ff")

High-level Foreign Function Interface operations

The following high-level operations are used with the Foreign Function
Interface. They can be used only on object files in the MPW object file
format.
600 Macintosh Common Lisp Reference

ff-load [Function]

Syntax ff-load files &key :entry-names :libraries :library-entry-
names :ffenv-name :replace

Description The ff-load function loads the MPW object files specified by files and
returns a foreign function environment.

The foreign function environment returned consists of code segments, a jump
table, a static data area, and a collection of active entry point names. Dead code
is removed so that only code and data reachable from the active entry points
are included in the environment.

Each call to ff-load produces a distinct foreign function environment, with
its own global space, function code, and so on. There is no sharing of code or
data between environments produced by separate calls to ff-load. For
example, if two different calls to ff-load require a library function atoi,
they will each get their own copy of atoi. If they each refer to a global variable
errno, they will get their own copy of errno. To share data and library code
between routines, you must link the routines in a single call to ff-load.

Arguments files A filename, a pathname, or a list of filenames and
pathnames of MPW object files.

:entry-names
A list of strings naming all the entry points in files that
should be active. If :entry-names is not specified or its
value is nil, all entry points in files are active. Note that
these strings are case sensitive.

:libraries A list of additional object files to load. These differ from
the files in files in that, by default, entry points in libraries
are not considered active (so that code from libraries is
not included in the link unless the code is needed by other
functions).

:library-entry-names
A list of active entry point names in libraries. This
overrides the default for libraries of only including those
entry points used by other functions.

:ffenv-name A symbol. If :ffenv-name is given and its value is not
nil, ff-load checks to see whether an environment
with the given name is already loaded. If so, the action
taken depends on the value of the :replace argument
(described next). If not, the specified files are loaded and
the resulting environment is given the name passed in
this argument. This argument can be used to make ff-
load behave somewhat like require.
Chapter 17: Foreign Function Interface 601

:replace If :replace is given and its value is not nil, the files are
always loaded and any previously loaded environment of
the same name (as specified by the :ffenv-name
argument) is disposed of. (The previously existing
environment is disposed of only if the loading is
successful.)

Example
(setf (logical-pathname-translations "mpw")
 '(("clib;**;*.*" "hd:mpw:libraries:clibraries:**:*.*")
 ("lib;**;*.*" "hd:mpw:libraries:libraries:**.*.*")
 ("**;*.*" "hd:mpw:**:*.*")))
(defparameter *c-libraries*
 '("mpw:clib;stdclib.o""mpw:lib;interface.o"))

(ff-load "c-hacks;utils.c.o"
 :ffenv-name 'c-utils
 :libraries *c-libraries*
 :library-entry-points
 '("atoi" "strcmp"))

(deffcfun (frob "frob") ...) ;frob is defined in utils.c
(deffcfun (atoi "atoi") ...)
(deffcfun (strcmp "strcmp") ...)

For information on setting up logical pathnames, look in the file
ff-example.lisp in the FF Examples subfolder of your Examples
folder.

dispose-ffenv [Function]

Syntax dispose-ffenv ffenv

Description The dispose-ffenv function disposes of the heap storage used by the
environment ffenv. If you call a foreign function residing in an
environment that has been disposed of, you will almost certainly crash.

Argument ffenv A foreign function environment, as returned by
ff-load, or a symbol naming a foreign function
environment.

Example

See “A Short example” on page 609.
602 Macintosh Common Lisp Reference

defffun [Macro]

deffcfun [Macro]

deffpfun [Macro]

Syntax defffun (lisp-name entry-name {option}*) ({argspec}*) {result-flag}*
deffcfun (lisp-name entry-name {option}*) ({argspec}*) {result-flag}*
deffpfun (lisp-name entry-name {option}*) ({argspec}*) {result-flag}*

Description These macros help you define an MCL interface to a foreign function. You
describe the arguments the function takes and the result it returns, and
defffun defines an MCL function that performs appropriate coercions
and type checks on the arguments and calls the foreign function. The
deffcfun and deffpfun macros are identical to defffun except that
they set the :language option.

Arguments lisp-name The name of the MCL function that is defined by the
macro. This must be a symbol.

entry-name The name of an active entry point in a foreign function
environment. It should be a string. Entry point names are
case sensitive. If entry-name exists in more than one
loaded environment, the environment used is undefined.

option The entry name may be followed by options that further
describe the foreign function. The options to deffun,
deffcfun, and deffpfun provide information on the
syntax and calling sequence of the function being defined.
These options are :language, :check-args, and
:reverse-args.

:language
The value of :language indicates the language used to
define the foreign function, which in turn regulates
defaults for other options. This option is currently used in
the macroexpansion of deffcfun and deffpfun. Future
extensions will support other language types.

:check-args
If the value of :check-args is non-nil (the default), the
function performs run-time checks to ensure that the
actual argument types match the declared expectations. If
its value is nil, this type checking is skipped. This option
may be overridden by individual argspecs.

:reverse-args
If the value of :reverse-args is non-nil, the
arguments are pushed on the stack in reverse order from
that specified in the argspec list. This is the default if the
language is C.
Chapter 17: Foreign Function Interface 603

argspec The description of a single argument to the foreign
function. Argument specifications have the general form
(lisp-type {flag}*). They are described in detail in the next
section, “Argument Specifications.”

result-flag The value returned by the function. Result flags are
described in “Result flags” on page 608.

Example

See “A Short example” on page 609.

Argument specifications

The argument specifications of foreign function calls give information
about each argument the foreign function will receive, including the
MCL type to expect and a series of flags. The flags give information on
the foreign type, the argument-passing method, and the necessity for
argument checking.

lisp-type
Any valid MCL type specifier. It declares that the
corresponding argument to the MCL function will be
of that type. If argument checking is requested, a
check-type form is included in the MCL function. In
addition, lisp-type is used to select the argument-
passing convention and foreign type, if these are not
explicitly specified. If lisp-type is a symbol (not a list)
and there are no flags, the parentheses around argspec
may be omitted.

flags
Specify the format (foreign type) in which the
corresponding argument should be passed, the
method for passing, and the necessity for performing a
type check of the argument. The following flags
describe the format (foreign type) of the argument to
be passed to the foreign function. They are mutually
exclusive; that is, you may choose only one of the
possible values.
604 Macintosh Common Lisp Reference

:long
The foreign function is expecting a longword value.
The MCL argument should be an integer or a character
(in which case its char-code is used). It can also be a
four-character string or a symbol.

:word
The foreign function is expecting a word value. The
MCL argument should be a fixnum. The low 16 bits of
the value constitute the foreign argument.

:double
The foreign function is expecting a floating-point value
in the machine double format (8 bytes). The MCL
argument should be of type double-float.

:extended
The foreign function will receive a floating-point value
in SANE extended format (10 bytes). The MCL
argument should be of type double-float.
The:extended flag is the default floating-point type
for C and Pascal.

:ptr

The foreign function will receive a longword value.
The argument should be an object of type macptr. (See
Chapter 15: Low-Level OS Interface for a description
of this MCL data type.)

:Lisp-ref
The foreign function is expecting a pointer to an MCL
value. A temporary location is reserved (for the
duration of the call) in nonrelocatable memory, a
pointer to the MCL argument is placed in that location,
and the address of the location is passed to the foreign
function. The foreign function can access the MCL data
using double indirection, just as it would a Macintosh
handle. The contents of the location are updated
whenever the MCL data is relocated.

:cstring
The foreign function is expecting a null-terminated
string. The MCL argument should be an MCL string.
The foreign function must not modify any locations
beyond the end of the string. The string may be of any
length.
Chapter 17: Foreign Function Interface 605

(:cstring size)
The foreign function is expecting a null-terminated
string in a buffer of size bytes (not including the null).
The MCL argument should be a string of size characters
or less. The foreign function must not modify any
locations beyond the end of the buffer.

:pstring
The foreign function is expecting a Pascal string (a
string preceded by a count byte). The MCL argument
should be a string. The foreign function must not
modify any locations beyond the end of the string. If
the argument is longer than 255 characters, an error is
signaled.

(:pstring size)
The foreign function is expecting a string preceded by
a length byte in a buffer of size bytes (not including the
length byte). The MCL argument should be a string size
characters long or less. The foreign function must not
modify any locations beyond the end of the buffer.

If no foreign format flag is specified, a default is chosen based on the
lisp-type and the :language option, according to Table 17-1. If lisp-type
is not listed in the table, there is no default (and the foreign type must
be specified).

■ Table 17-1 Foreign type defaults

MCL type In C In Pascal

The following flags are used to specify the argument-passing method.
They are mutually exclusive; that is, you may choose only one of the
possible values.

Integer :long :word

Character :long :word

String :cstring :pstring

Float :extended :extended
606 Macintosh Common Lisp Reference

:by-value
The value of the argument is passed to the foreign
function (pushed on the stack). This method may not
be used to pass strings (that is, the argument format
must not be :cstring or :pstring).

:by-address
The address of a location containing a copy of the
argument is passed to the foreign function (pushed on the
stack). If the foreign function modifies the argument, the
changes will not be visible to Macintosh Common Lisp.
Use :by-reference if you want Macintosh Common
Lisp to see changes.

:by-reference
The address of a location containing a copy of the
argument is passed to the foreign function (pushed on
the stack). In addition, arrangements are made so that
upon return from the foreign function, any changes in
the copy are reflected in the MCL argument itself. Thus
foreign functions may destructively modify MCL data
structures. Only floating-point values and strings may
be passed by reference (that is, the argument format
must be :cstring, :pstring, :double, or
:extended). When a string is passed by reference and
the foreign function changes the size of the string, an
error is signaled unless the MCL string is adjustable.

When no passing method is specified, the default is to pass :long,
:word, :ptr, and :Lisp-ref arguments by value and others by
address. In addition, if the language is C, :extended arguments are
passed by value.

The following flags specify whether type checking should be
performed on lisp-type. Using one of these flags lets you override the
:check-args option for the function as a whole. The two flags are
mutually exclusive.

:check-arg

The argument is checked at run time to ensure it is of
type lisp-type.

:no-check-arg
The argument type is not checked at run time.
Chapter 17: Foreign Function Interface 607

Result flags

The value returned by the foreign function is described by result-flags.
These flags describe the type and location of the returned value.

The type of the returned value is described by one of the following
keywords. The type determines how the result is coerced before it is
passed back to Macintosh Common Lisp.

:long

The result is interpreted as a 32-bit signed integer and
returned as a signed MCL integer.

:full-long
The result is equivalent to :long; maintained for
backward compatibility.

:word

The returned value is a 16-bit word. It is interpreted as
a signed integer and returned as a fixnum.

:double

The foreign result is a double float. It is coerced to an
MCL double float.

:extended

The foreign result is a float in extended format. It is
coerced to
an MCL double float.

:float

This is a synonym for :extended.

:char

The foreign result is a character. The low 8 bits of the
returned value are interpreted as a character code and
returned as an MCL character.

:ptr

The returned value is a 32-bit integer of type macptr.

:novalue

The foreign function returns no value. The MCL
function returns nil. This is the default if the language
is Pascal.

The location of the returned value is described by one of the following
keywords:
608 Macintosh Common Lisp Reference

:d0–:d7 The foreign function returns the value in the
specified data register as a signed MCL integer. The
default is :d0 if the language is :c.

:a0–:a4 The value in the specified address register is
returned as a macptr. (See Chapter 15: Low-Level OS
Interface for a description of macptrs.).

:stack The foreign function returns the value on top
of the stack as a macptr.

A Short example

Assume that the file test.c contains the following C function:
#include <ctype.h>
#include <memory.h>

digitval (ch)
 char ch;
{ if isdigit(ch) return ch - '0';
 else return -1;
}

After compiling this file in MPW, you can use it from within Macintosh
Common Lisp as follows:
? (ff-load "test.c.o" :ffenv-name 'test
 :libraries *c-libraries*)
#<A FF-ENV>

? (deffcfun (digit-value "digitval")
 (character) :long)
DIGIT-VALUE
? (digit-value #\7)
7
? (digit-value #\A)
-1
Chapter 17: Foreign Function Interface 609

Low-level functions

The following low-level functions are used to implement the higher-
level functions described earlier in this chapter. You may want to use
the low-level functions if you require increased speed or flexibility. The
ff-call function is faster than higher-level functions because it is
open-coded and the arguments are not coerced or checked for types.
This gives more flexibility at the cost of some error checking.

If you use these functions, it is your responsibility to pass the right
types; if you pass the wrong types, the system will probably crash.

ff-call [Function]

Syntax ff-call pointer {type-keyword argument}* [:return-block
pointer| return-value-keyword]

Description The ff-call function transfers control to the address pointer, passing
arguments according to the type-keyword/argument pairs.

In MCL 4.0, this can be used to call a universal proc through the
CallUniversalProc trap.

The ff-call function returns a value according to :return-block or
return-value-keyword. If the :return-block keyword is present, ff-call
returns nil. If it is not present, ff-call returns the value appropriate for
return-value-keyword.

This function is useful if you have 'CODE' resources with entry points at
known offsets. Keep in mind, however, that no type checking is performed on
the arguments and that the system will probably crash if bad arguments are
passed.

The stack-based arguments are pushed on the stack in the order in which they
appear in the call.

If the returned value is to be taken from the stack, room is left on the stack for
this value before any stack-based arguments are pushed. The foreign function
is entered at pointer with the return address on the top of the stack. The
function does not have to obey strict stack discipline, but it must never lower
the stack beyond its arguments (in other words, it should never pop anything
more than its arguments, and it should not modify any data on the stack
beyond the arguments).

Arguments pointer A pointer to the entry point of the foreign function to be
called.
610 Macintosh Common Lisp Reference

type-keyword Indicates what type of coercion to perform on the
subsequent argument and where to place the argument.
The possible values of type-keyword are the following:

:word The MCL argument should be a fixnum. The low 16 bits
of the argument are pushed on the stack.

:long The MCL argument should be an integer or a character, in
which case its char-code is used. It can also be a four-
character string or a symbol. It is coerced to a longword
and the result is pushed on the stack. (See th“32-bit
immediate quantities” on page 594.)

:ptr An object of type macptr. Its associated address is
pushed on the stack. (See Chapter 15: Low-Level OS
Interface for a description of macptrs.)

:d0-:d7 The MCL argument should be an integer or character, in
which case its char-code is used. It can also be a four-
character string or a symbol. It is coerced to a longword
and the result is placed in the indicated data register. The
same constraints apply as in :long, described
previously.

:a0-:a4 A macptr. Its associated address is placed in the indicated
address register.

:a5 A macptr. Its associated address is placed in the A5
register and in the Macintosh low memory global
CurrentA5 for the duration of the call.

argument An argument.
:return-block

A keyword. If this keyword appears in a call to ff-call,
it should be followed by a pointer to a block of memory
where the returned values are placed. This mechanism
lets a foreign function return values from multiple
registers and positions on the stack. If this keyword is
present, ff-call returns nil.

return-value-keyword
Indicates the type of value the function returns if
:return-block is not present. If the value of return-
value-keyword is not supplied, :novalue is assumed. The
following keywords are recognized:

:word A 16-bit result is read from the top of the stack, sign
extended, and returned as a signed MCL integer.

:long A 32-bit result is read from the top of the stack and
returned as a signed MCL integer.

:ptr A 32-bit result is read from the top of the stack and
returned as an object of type macptr.

:d0-:d7 The value in the indicated data register is returned as a
signed MCL integer.
Chapter 17: Foreign Function Interface 611

:a0-:a4 The value in the indicated data register is returned as a
macptr. (See Chapter 15: Low-Level OS Interface for a
description of macptrs.)

:novalue No value is returned from the function. The
ff-call function returns nil.

ff-lookup-entry [Function]

Syntax ff-lookup-entry entry-name

Description The ff-lookup-entry function returns two values describing the entry
point named entry-name. The entry point must be an active entry point in some
previously loaded environment. Note that entry point names are case
sensitive. The first value returned is a pointer to the entry point. The second
value is the A5 pointer for the environment where the entry point was found.
If entry-name does not exist, nil is returned. If entry-name exists in more than
one loaded environment, the specific environment returned is undefined.

Using the ff-lookup-entry function is a relatively slow operation. You
normally call it once at load time and store the results in some easily accessible
place, rather than calling it every time you need to reference the entry point.
Note that the values returned by ff-lookup-entry are pointers and thus
cannot be maintained across image saves and restarts. When restarting a Lisp
image, you must reinitialize all entry information by calling ff-lookup-
entry again.

Argument entry-name A string giving the name of an entry point in a foreign
function environment. The string is case sensitive.

Examples

Here are two examples.
;frob is a foreign function:
? (multiple-value-bind (entry a5)

 (ff-lookup-entry "frob")

 (ff-call entry :a5 a5))

;FrobCount is a static integer variable:
? (format T "There are ~D frobs."

 (%get-long

 (ff-lookup-entry "FrobCount")))

%word-to-int [Function]

Syntax %word-to-int fixnum
612 Macintosh Common Lisp Reference

Description The %word-to-int function sign-extends the low 16 bits of fixnum to a
full integer value.

Argument fixnum A fixnum.

Example
? (= (%word-to-int #xFFFF) -1)

T

? (= (%word-to-int 1) 1)

T

%copy-float [Function]

Syntax %copy-float float

Description The %copy-float function returns a copy of float, that is, a newly consed
floating-point number that is eql but not eq to float. The argument can be
an MCL double-float or a macptr to a memory location that contains a
64-bit floating-point number in machine format (see 68881 or SANE
documentation for details).

Argument float A floating-point number.

Calling Macintosh Common Lisp from foreign functions

A foreign function may call an MCL function, receive a returned value,
and do further processing before returning to Macintosh Common
Lisp. An MCL function that is to be called by a foreign function must be
defined with one of the following macros. The macros create a pointer,
which can then be passed to the foreign function.

The defccallable macro is used to define MCL functions that can be
called from C. The defpascal macro is used to define MCL functions
that can be called from the Macintosh Toolbox or from user-written
Pascal code. Both of these macros put an MCL function in the function
cell of a symbol and a pointer to the C or Pascal entry point in the value
cell of a symbol.

The defpascal and defccallable macros are described in Chapter
15: Low-Level OS Interface.
Chapter 17: Foreign Function Interface 613

The following example uses defccallable. It uses a C function,
addthree, that takes two arguments: an integer and a pointer to an
MCL function. The C function adds 1 to its first argument, then calls the
MCL function pointed to by its second argument. This MCL function is
passed the incremented first argument.

The MCL function increments its argument and returns it, whereupon
the C function increments it again and returns the value. Here control
passes from Macintosh Common Lisp to C to Macintosh Common Lisp
to C and finally back to Macintosh Common Lisp.

The addthree function is accurately named only if it is passed a
pointer to an MCL function that takes a fixnum argument, increments
it, and returns the incremented value.

Here is the C function:
int addthree (i, Lispfn)

int i, (*Lispfn) ();
{
i = i + 1;
i = (*Lispfn) (i);
return i + 1;
}

The MCL defccallable macro sets the value of its first argument to
the entry point for the function that it defines. Here is the MCL macro:
? (defccallable add-one

 (:long i :long))
 (+ i 1))
ADD-ONE

The pointer to the MCL function is not an MCL data type, so use t as
the type specifier.
? (deffcfun (add-three "addthree")
 ((fixnum :long) (t :ptr))
 :long)
ADD-THREE

The pointer to the MCL function is stored in the value cell of add-one,
so you don’t need to quote the symbol or use the special form
function.
? (add-three 5 add-one)
8

614 Macintosh Common Lisp Reference

Extended example

The files ff-example.c, ff-example.Lisp, and ff-
example.test in the FF Examples folder in your Examples folder
contain an expression-by-expression example of how to use the Foreign
Function Interface with C.

Perform the following steps.

■ Boot MPW.

■ Edit your foreign language code. The examples use a set of C functions
defined in the file example.c on the Foreign Function Interface disk.

■ Compile your code. Use the MPW Build facility to make sure you get
all of the right library files.

■ Test your code in MPW. This stage isn’t strictly necessary but will
ensure that you pass MCL-proven working code. If you don’t test your
code in MPW, it isn’t necessary to link it. Macintosh Common Lisp
needs only the object files.

■ Start Macintosh Common Lisp and load the Foreign Function Interface.

■ MCL code for loading the foreign function files and defining an MCL
interface to the functions is given in the file example.lisp in the FF
Examples subfolder of your MCL Examples folder.

■ Call the foreign functions from Macintosh Common Lisp.

Examples for testing the code are contained in the file example.test
in the FF Examples subfolder.
Chapter 17: Foreign Function Interface 615

616 Macintosh Common Lisp Reference

Appendix A:

Implementation Notes

Contents

The Metaobject Protocol / 619
Metaobject classes defined in Macintosh Common Lisp / 619
Unsupported metaobject classes / 621
Unsupported Introspective MOP functions / 621
MCL functions relating to the Metaobject Protocol / 622

MCL class hierarchy / 633
Types and tag values / 633

Tags in MCL 3.1 / 633
Tags in MCL 4.0 / 634
Raw Object Access / 635

Reader macros undefined in Common Lisp / 636
Numeric arguments in pathnames / 636
Numbers / 636

Floating point numbers in MCL 4.0 / 638
Characters and strings / 640
Ordering and case of characters and strings / 641
The script manager / 642

Script manager utilities / 642
String lengths / 643

Arrays / 645
Default array contents / 645
Array element types and sizes / 645

Packages / 648
Additional printing variables / 649
Memory management / 650
Garbage collection / 650

Ephemeral garbage collection / 650
Guidelines for enabling the EGC / 651
EGC in MCL 3.1 / 651
Controlling the EGC / 652
Enabling the EGC programmatically / 653

Full garbage collection / 654
617

Garbage Collection Statistics / 654
Termination / 656

Termination in MCL 4.0 / 656
Termination in MCL 3.1 / 659

Macptrs and termination in MCL 3.1 / 660
Evaluation / 661
Compilation / 661

Tail recursion elimination / 662
Self-referential calls / 662
Compiler policy objects / 662

Listener Variables / 667
Patches / 668
Miscellaneous MCL expressions / 669

This appendix describes details of the implementation of Common Lisp by
Macintosh Common Lisp. It includes information on cases that are ambiguous
in Common Lisp and provides technical information on memory
management, the compiler, and other aspects of the Macintosh Common Lisp
system.
618 Macintosh Common Lisp Reference

The Metaobject Protocol

Macintosh Common Lisp version 2 implements CLOS as documented
in the second edition of Common Lisp: The Language. It also contains
some informational functions that are part of the Metaobject Protocol
(MOP) as described in The Art of the Metaobject Protocol by Gregor
Kiczales and others (MIT Press, 1991).

Metaobject classes defined in Macintosh Common Lisp

Table A-1 shows the class structure of the metaobject classes defined in
Macintosh Common Lisp version 2. All the metaobject classes are
instances of standard-class except generic-function and
standard-generic-function, which are instances of
funcallable-standard-class. They are not documented in
Common Lisp: The Language, but some of them are documented in The
Art of the Metaobject Protocol.

■ Table A-1 Structure of metaobject classes defined in Macintosh Common Lisp
version 2

Class Direct superclasses

standard-object t

structure-object t

metaobject standard-object

method-combination metaobject

long-method-combination method-combination

short-method-combination method-combination

standard-method-combination method-combination

method metaobject

standard-method method

standard-accessor-method standard-method

standard-writer-method standard-accessor-method

standard-reader-method standard-accessor-method
Appendix A: Implementation Notes 619

■ Table A-1 Structure of metaobject classes defined in Macintosh Common Lisp
version 2 (continued)

Class Direct superclasses

During compilation, if a class definition is encountered for a previously
unknown class, an instance of the class named ccl::compile-time-
class is added to the compilation environment. This instance is a stub
only. The Common Lisp generic function class-name returns its
name and find-class finds it if given the compile-time environment
as its third argument, but none of the other MOP functions returns any
kind of useful information. For example, class-precedence-list
signals an error when called with an instance of ccl::compile-
time-class. This way of handling defclass at compile time is very
likely to change in future versions of Macintosh Common Lisp.

The class named ccl::std-class is an implementation detail that
may change in future versions of Macintosh Common Lisp; hence its
name is not exported. It is included in the above table for completeness.

generic-function metaobject

ccl::funcallable-standard-object

standard-generic-

function

generic-function

specializer metaobject

class specializer

ccl::compile-time-

class

class

structure-class class

built-in-class class

ccl::std-class class

funcallable-

standard-class

std-class

standard-class std-class
620 Macintosh Common Lisp Reference

Unsupported metaobject classes

The following metaobject classes do not exist in Macintosh Common
Lisp version 2.0:

eql-specializer

forward-referenced-class

slot-definition

standard-slot-definition

standard-direct-slot-definition

standard-effective-slot-definition

Unsupported Introspective MOP functions

The following functions, which are part of the de facto Introspective
MOP standard, are not supported by Macintosh Common Lisp verson
2.0:

class-default-initargs

class-direct-default-initargs

generic-function-argument-precedence-order

generic-function-declarations

generic-function-initial-methods

generic-function-lambda-list

method-lambda-list

slot-boundp-using-class

slot-definition-class

slot-definition-allocation

slot-definition-initargs

slot-definition-initform

slot-definition-initfunction

slot-definition-name

slot-definition-readers

slot-definition-type

slot-definition-writers

slot-exists-p-using-class

slot-makunbound-using-class

slot-value-using-class
Appendix A: Implementation Notes 621

MCL functions relating to the Metaobject Protocol

The following MOP functions are supported in Macintosh Common
Lisp.

class-direct-subclasses [Generic function]

Syntax class-direct-subclasses (class class)

Description The class-direct-subclasses generic function returns a list of the
direct subclasses of the given class, that is, all classes that mention this
class in their defclass forms.

Argument class A class.

Example
? (defclass foo () ())

#<STANDARD-CLASS FOO>

? (defclass bratch (foo) ())

#<STANDARD-CLASS BRATCH>

? (defclass gronk (foo) ())

#<STANDARD-CLASS GRONK>

? (class-direct-subclasses (find-class 'foo))

(#<STANDARD-CLASS GRONK> #<STANDARD-CLASS BRATCH>)

? ? (class-direct-subclasses (find-class 'standard-object))

(#<STANDARD-CLASS FOO>

 #<STANDARD-CLASS INSPECTOR::ERROR-FRAME>

 #<STANDARD-CLASS INSPECTOR::UNDO-VIEW-MIXIN>

 #<STANDARD-CLASS INSPECTOR::BOTTOM-LINE-MIXIN>

 #<STANDARD-CLASS INSPECTOR::CACHE-ENTRY>

 #<STANDARD-CLASS INSPECTOR::BASICS-FIRST-MIXIN>

 #<STANDARD-CLASS INSPECTOR::OBJECT-FIRST-MIXIN>

 #<STANDARD-CLASS INSPECTOR::UNBOUND-MARKER>

 #<STANDARD-CLASS INSPECTOR::INSPECTOR> #<STANDARD-CLASS
MENUBAR>

 #<STANDARD-CLASS KEY-HANDLER-MIXIN> #<STANDARD-CLASS
APPLICATION>

 #<STANDARD-CLASS CONDITION> #<STANDARD-CLASS SCRAP-HANDLER>

 #<STANDARD-CLASS CCL::LISP-WDEF-MIXIN>

 #<STANDARD-CLASS CCL::INSTANCE-INITIALIZE-MIXIN>

 #<STANDARD-CLASS FUNCALLABLE-STANDARD-OBJECT>

 #<STANDARD-CLASS METAOBJECT>)
622 Macintosh Common Lisp Reference

The file grapher.lisp in your MCL Examples folder contains a good
example of the use of class-direct-subclasses.

class-direct-superclasses [Generic function]

Syntax class-direct-superclasses (class class)

Description The class-direct-superclasses generic function returns a list of
the direct superclasses of the given class, that is, all classes that are
specified in the class’s defclass form.

Argument class A class.

Example
? (defclass my-io-stream (input-stream output-stream) ())

#<STANDARD-CLASS MY-IO-STREAM>

? (class-direct-superclasses *)

(#<STANDARD-CLASS INPUT-STREAM> #<STANDARD-CLASS OUTPUT-
STREAM>)

class-precedence-list [Generic function]

Syntax class-precedence-list (class class)
class-precedence-list (class standard-class)

Description The class-precedence-list generic function returns the class
precedence list for the given class. This list is used by compute-
applicable-methods to determine the order of precedence of methods
specialized on the class.

Argument class A class.

Example
? (defclass foo () ())

#<STANDARD-CLASS FOO>

? (class-precedence-list *)

(#<STANDARD-CLASS FOO> #<STANDARD-CLASS STANDARD-OBJECT>
#<BUILT-IN-CLASS T>)

? (defclass bar () ())

#<STANDARD-CLASS BAR>

? (class-precedence-list *)

(#<STANDARD-CLASS BAR> #<STANDARD-CLASS STANDARD-OBJECT>
#<BUILT-IN-CLASS T>)

? (defclass gronk (foo bar) ())
Appendix A: Implementation Notes 623

#<STANDARD-CLASS GRONK>

? (class-precedence-list *)

(#<STANDARD-CLASS GRONK> #<STANDARD-CLASS FOO> #<STANDARD-
CLASS BAR>

 #<STANDARD-CLASS STANDARD-OBJECT> #<BUILT-IN-CLASS T>)

class-prototype [Generic function]

Syntax class-prototype (class ccl::std-class)
class-prototype (class structure-class)

Description The class-prototype generic function returns a prototype instance of
the given class. The contents of the instance are undefined, though it has
the same number of instance slots as an instance created with make-
instance (or a structure creator function), and all class slots are
accessible.

Argument class A class.

Example

In this example, y is bound only because of :allocation :class.
? (defclass foo ()

 ((x :initform 1 :accessor foo-x)

 (y :allocation :class

 :initform 2 :accessor foo-y)))

#<STANDARD-CLASS FOO>

? (foo-y (class-prototype (find-class 'foo)))

2

class-direct-instance-slots [Generic function]

Syntax class-direct-instance-slots (class ccl::std-class)

Description The class-direct-instance-slots generic function returns a list of
slot definition objects describing the instance slots that were declared in
the class’s defclass forms. MCL slot definitions are represented as lists.
The only supported accessor for a slot definition object is slot-
definition-name.

Argument class A class.

Example
624 Macintosh Common Lisp Reference

See the example in the definition of slot-definition-name on
page 629.

class-direct-class-slots [Generic function]

Syntax class-direct-class-slots (class ccl::std-class)

Description The class-direct-class-slots generic function returns a list of slot
definition objects describing the class slots that were declared in the class’s
defclass forms. MCL slot definitions are represented as lists. The only
supported accessor for a slot definition object is slot-definition-
name.

Argument class A class.

class-instance-slots [Generic function]

Syntax class-instance-slots (class ccl::std-class)

Description The class-instance-slots generic function returns a list of slot
definition objects describing all the instance slots, direct and inherited,
that were declared in the defclass for the class. MCL slot definitions are
represented as lists. The only supported accessor for a slot definition object
is slot-definition-name.

Argument class A class.

class-class-slots [Generic function]

Syntax class-class-slots (class ccl::std-class)

Description The class-class-slots generic function returns a list of slot definition
objects describing all the class slots, direct and inherited, that were
declared in the defclass for the class. MCL slot definitions are
represented as lists. The only supported accessor for a slot definition object
is slot-definition-name.

Argument class A class.

Example
? (defclass foo ()

 ((x :accessor foo-x

 :initarg :x
Appendix A: Implementation Notes 625

 :initform 1)

 (y :allocation :class

 :accessor foo-y

 :initarg :y

 :initform 2)))

#<STANDARD-CLASS FOO>

? (defclass bar (foo)

 ((m :accessor bar-m

 :initarg :m

 :initform 3)

 (n :allocation :class

 :accessor bar-n

 :initarg :n

 :initform (log 4))))

#<STANDARD-CLASS BAR>

? (class-direct-instance-slots (find-class 'bar))

((M (3) (:M)))

? (class-direct-class-slots (find-class 'bar))

((N #<Anonymous Function #xDF2EA6> (:N)))

? (class-instance-slots (find-class 'bar))

((M (3) (:M)) (X (1) (:X)))

? (class-class-slots (find-class 'bar))

((N (1.3862943611198906) (:N)) (Y (2) (:Y)))

specializer-direct-methods [Generic function]

Syntax specializer-direct-methods (specializer class)
specializer-direct-methods (specializer list)

Description The specializer-direct-methods generic function returns a list of
all methods that specialize on the given specializer. An eql specializer is
represented as a list of length 2 whose car is the symbol eql and whose
cadr is an MCL object.

In the default world, the specializer-direct-methods lists are not
cached. The first time you call specializer-direct-methods or
specializer-direct-generic-functions, it maps over all the generic
functions, computing the direct methods lists for all specializers. It also enables
caching of this information for subsequent calls to add-method and remove-
method. This caching is preserved across calls to save-application. The
function clear-class-direct-methods-caches clears all the cached
information and stops add-method from keeping track of it until the next call
to specializer-direct-methods or specializer-direct-generic-
functions.
626 Macintosh Common Lisp Reference

Argument specializer A class or a list of the form (eql object).

specializer-direct-generic-functions [Generic function]

Syntax specializer-direct-generic-functions (specializer class)
specializer-direct-generic-functions (specializer list)

Description The specializer-direct-generic-functions generic function
returns a list of all generic functions that specialize on the given
specializer. An eql specializer is represented as a list of length 2 whose
car is the symbol eql and whose cadr is an MCL object.

In the default world, the specializer-direct-generic-functions lists
are not cached. The first time you call specializer-direct-methods or
specializer-direct-generic-functions, it maps over all the generic
functions, computing the direct methods lists for all specializers. It also enables
caching of this information for subsequent calls to add-method and remove-
method. This caching is preserved across calls to save-application. The
function clear-class-direct-methods-caches clears all the cached
information and stops add-method from keeping track of it until the next call
to specializer-direct-methods or specializer-direct-generic-
functions.

Argument specializer A class or a list of the form (eql object).

generic-function-methods [Generic function]

Syntax generic-function-methods (generic-function standard-generic-
function)

Description The generic-function-methods generic function returns a list of the
methods for generic-function.

Argument generic-function A generic function.

Example
? (defmethod foo ((x integer)) x)

#<STANDARD-METHOD FOO (INTEGER)>

? (defmethod foo ((x fixnum)) (+ x (call-next-method)))

#<STANDARD-METHOD FOO (FIXNUM)>

? (generic-function-methods #'foo)

(#<STANDARD-METHOD FOO (FIXNUM)> #<STANDARD-METHOD FOO
(INTEGER)>)
Appendix A: Implementation Notes 627

method-function [Generic function]

Syntax method-function (method standard-method)

Description The method-function generic function returns the function that runs
when method is invoked. This function takes the same number of
arguments as the generic function. If it was generated from code
containing a call to call-next-method, function-calling it with
funcall will cause Macintosh Common Lisp to crash. (Otherwise it can
be function-called safely.)

Argument method A standard method.

method-generic-function [Generic function]

Syntax method-generic-function (method standard-method)

Description The method-generic-function generic function returns the generic
function associated with method, or nil if there is none.

Argument method A standard method.

Example
? (setq m (defmethod foo ((x integer)) x))

#<STANDARD-METHOD FOO (INTEGER)>

? (method-generic-function m)

#<STANDARD-GENERIC-FUNCTION FOO #xD61B66>

? (remove-method (method-generic-function m) m)

#<STANDARD-GENERIC-FUNCTION FOO #xD61B66>

? (method-generic-function m)

NIL

method-name [Generic function]

Syntax method-name (method standard-method)

Description The method-name generic function returns the name of method

Argument method A standard method.

Example
? (defmethod foo ((x integer)) x)

#<STANDARD-METHOD FOO (INTEGER)>
628 Macintosh Common Lisp Reference

? (method-name *)

FOO

method-qualifiers [Generic function]

Syntax method-qualifiers (method standard-method)

Description The method-qualifiers generic function returns a list of the qualifiers
for method. (See Common Lisp: The Language, pages 839, 849.)

Argument method A standard method.

method-specializers [Generic function]

Syntax method-specializers (method standard-method)

Description The method-specializers generic function returns a list of the
specializers for method.

Argument method A standard method.

Example
? (defmethod bar ((x integer) (y list)) (cons x y))

#<STANDARD-METHOD BAR (INTEGER LIST)>

? (method-specializers *)

(#<BUILT-IN-CLASS INTEGER> #<BUILT-IN-CLASS LIST>)

slot-definition-name [Generic function]

Syntax slot-definition-name (slot-definition list)

Description The slot-definition-name generic function returns the name of slot-
definition. Future versions of Macintosh Common Lisp will fully support
the slot-definition class.

Argument slot-definition A slot definition object.

Example
? (defclass foo () (x y))

#<STANDARD-CLASS FOO>

? (mapcar 'slot-definition-name

 (class-direct-instance-slots *))
Appendix A: Implementation Notes 629

(X Y)

copy-instance [Generic function]

Syntax copy-instance (instance standard-object)

Description The copy-instance generic function returns a copy of the given
instance. The default method merely copies the vector used to store the
instance slots for the instance. Users may add methods to perform
additional initialization for the copied method.

Argument instance An instance of standard-object or one of its
subclasses.

Example

There are examples of copy-instance in the Interface Toolkit source
code.

clear-specializer-direct-methods-caches [Function]

Syntax clear-specializer-direct-methods-caches

Description The clear-specializer-direct-methods-caches function clears
all the cached information returned by specializer-direct-
methods and specializer-direct-generic-functions,
preventing subsequent calls to add-method from caching this
information. The next call to either of these functions recomputes the
caches and reenables maintenance of them by
add-method.

clear-clos-caches [Function]

Syntax clear-clos-caches

Description The clear-clos-caches function clears CLOS caches in preparation
for doing a save-application if the value of the :clear-clos-
caches keyword argument to save-application is true (the default).
(See Appendix B: Workspace Images.) This function clears the effective
method caches stored inside generic functions and the valid initialization
argument caches stored inside classes.
630 Macintosh Common Lisp Reference

clear-gf-cache [Function]

Syntax clear-gf-cache generic-function

Description The clear-gf-cache function clears the cached effective methods for
generic-function. This function saves space but causes subsequent
invocations of the generic function to be slower until the cache is filled
again.

Argument generic-function
A generic function.

clear-all-gf-caches [Function]

Syntax clear-all-gf-caches

Description The clear-all-gf-caches function calls clear-gf-caches on all
generic functions. This function is called by clear-clos-caches.

method-exists-p [Function]

Syntax method-exists-p generic-function &rest args

Description The method-exists-p function returns nil if generic-function is not a
generic function or a symbol naming a generic function, or if (apply
generic-function args) would cause an error because there are no applicable
primary methods for the given arguments to the generic function.
Otherwise, it returns one of the applicable primary methods for generic-
function. This function is faster than compute-applicable-methods
and does not cons.

Arguments generic-function
A generic function or a symbol naming a generic function.

args One or more arguments to the generic function.

check-call-next-method-with-args [Variable]

Description The *check-call-next-method-with-args* variable determines
whether a run-time check is made during calls to call-next-method.
Appendix A: Implementation Notes 631

When the value of this variable is true (the default), then the check is made to ensure
that new arguments do not change the set of methods that are applicable for
the generic function.

When the value of this variable is nil, then no check is made.

The checking is not completely strict. If the required arguments that are passed
to call-next-method are eq to the original required arguments passed to
the generic function, then the test passes.

For effective methods that have already been cached, changes to *check-
call-next-method-with-args* will not take effect until clear-all-
gf-caches is invoked.

defmethod-congruency-override [Variable]

Description The *defmethod-congruency-override* variable allows you to
override standard MCL behavior when you define global generic
functions.

When the value of this variable is nil (the default), then an error is signaled.

When the value of this variable is true, then Macintosh Common Lisp does not
signal an error if the function binding of the generic function’s name is not a
generic function or if a method’s lambda list is not congruent to its generic
function’s lambda list.

If *defmethod-congruency-override* is a function, then it is called with
two arguments as described next.

If an attempt is made by defmethod or ensure-generic-function to
redefine a regular function, macro, or special form, *defmethod-
congruency-override* is called with two arguments, the function name (a
symbol) and nil. If nil is returned, an error is signaled. Otherwise, the
redefinition is performed.

If add-method is instructed to add a method to a generic function and the
lambda lists of the method and the generic function are not congruent,
defmethod-congruency-override is called with two arguments, the
generic function and the method. If it returns nil, an error is signaled.
Otherwise, all methods are removed from the generic function, the generic
function’s lambda list is redefined to be congruent with the method’s lambda
list, and the method is added.

If *defmethod-congruency-override* is not nil and not a function, it
behaves as if it were a function that always returns non-nil. Hence,
redefinitions are performed silently. This is very dangerous and should
usually be done only by patch files.
632 Macintosh Common Lisp Reference

MCL class hierarchy

The file print-class-tree.lisp in the MCL Examples folder
contains functions to print the class hierarchy of an MCL class in a way
that makes the direct superclasses and the class precedence list
apparent. It includes, as a comment, a hierarchy diagram for every class
in the MCL system, sorted by class name.

Types and tag values

MCL uses low tags to indicate the basic types of objects. The mapping
between tags and Common Lisp types is an implementation detail that
is likely to change in future version of Macintosh Common Lisp.

Tags in MCL 3.1

In MCL 3.1, references to Lisp objects are encoded in 32-bit 680x0
longwords. The 3 least significant bits of the longword are referred to
as the object’s tag and determine the type of the object (see the list of tag
values that follows). In the case of immediate objects such as fixnums,
characters, and short floats, the value of the object is contained in the
remaining 29 bits. In other cases, the 32-bit longword constitutes a
tagged pointer to the associated object.

A consequence of this tagging scheme is that all nonimmediate Lisp
objects are allocated on 8-byte boundaries.

■ The tag value of 0 is used to represent fixnums; the two’s-complement
value of the fixnum is stored in the upper 29 bits of the longword.
Fixnums can therefore store values in the range -2^28 through
(2^28)-1, inclusive. Note that this representation allows the direct
use of machine arithmetic instructions where applicable.

■ The tag value of 1 is used to represent variable-length objects called
uvectors. Objects with this tag include all arrays, CLOS instances,
structure instances, bignums, ratios, complex numbers, macptr
pointers, packages, and a few more internal types. A pointer that
contains this tag points 1 byte beyond the beginning of the storage
occupied by the object it points to.

■ The tag value of 2 represents symbols; symbol pointers therefore point
2 bytes into the storage allocated to the symbol.
Appendix A: Implementation Notes 633

■ The tag value of 3 represents double-precision floating-point values;
such pointers point 3 bytes into the 64-bit double-float.

■ The tag value of 4 represents cons cells and nil. Since the car of a
cons cell occupies the first of two longwords allocated to that cell,
cons-tagged objects point at the cdr of the cons cell.

■ The tag value of 5 is used to represent instances of the short-float data
type; the upper 29 bits of the longword encode a sign bit, a 5-bit
exponent, and a
23-bit significand.

■ The tag value of 6 is used to denote functions; all valid Lisp objects with
this tag point to executable machine code.

■ The tag value of 7 is used to represent small immediate objects,
including characters. The least significant byte of a character contains
the value #xF.

 If bits 8 to 15 of the character contain #xF, then the character is a
base character (a Lisp object of type base-character). The
character code of the character is contained in the most significant
word of the object; if the character is a base character, then this value
must be in the range 0 through 255 inclusive.

 The Lisp character type extended-character is not
implemented in this release of Macintosh Common Lisp. For now at
least, all Lisp objects of type character are of type base-
character.

 Other immediate objects whose tag is 7 and whose low byte is not
#xF are used to represent various constants used by the Memory
Manager and the run-time system.

Tags in MCL 4.0

MCL 4.0 uses the low three bits of an object as a tag. The low two bits
identify all objects that user code can get ahold of. Bit 2 (value 4) is used
along with the low two bits to additionally distinguish between user
objects and internal objects (e.g. uvector headers). The four kinds of
user objects and their low 2 bits are:

tag Object Type

0 fixnum

1 list (cons or nil)

2 uvector

3 immediate (e.g. character)
634 Macintosh Common Lisp Reference

Uvectors (tag 2) are further sub-tagged in the header of their
representation in memory. For more details on the tagging scheme, see
the file “compiler;ppc;ppc-arch.lisp”.

Raw Object Access

The following functions provide low-level access to objects that are
tagged as uvectors.

uvectorp [Function]

Syntax uvectorp object

Description The uvectorp function returns true if object is tagged as a uvector.

Argument object A variable-length uvector object.

uvsize [Function]

Syntax uvsize object

Description The uvsize function returns the size of object as a fixnum.

Argument object A variable-length uvector object.

uvref [Function]

Syntax uvref object index

Description The uvref function returns the element of object at index. The function
signals an error unless (<= 1 index (uvsize object)).

The function setf may be used with uvref to modify an element of a uvector.
If object is a simple array, uvref is the same as aref.

Arguments object A variable-length uvector object.

index An index into object.
Appendix A: Implementation Notes 635

Reader macros undefined in Common Lisp

In addition to supporting the standard Common Lisp reader macro
characters, Macintosh Common Lisp defines the following dispatching
reader macros, which are undefined in Common Lisp:

 #@ Transforms the subsequent list of two fixnums into a point.

 #$ Should be followed by a symbol symbol. Interns $symbol in the traps
package and, if *autoload-traps* is true, attempts to load an interface
constant definition. See Chapter 16: OS Entry Points and Records.

 #_ Should be followed by a symbol symbol. Interns _symbol in the traps
package and, if *autoload-traps* is true, attempts to load a trap
definition. See Chapter 16: OS Entry Points and Records.

Numeric arguments in pathnames

Macintosh Common Lisp uses the CLOS #P syntax for pathnames, but
it also has a numeric argument that specifies one of four possible
unusual conditions in the pathname. These numeric arguments are an
error in Common Lisp and should not be used in portable code:

 #1P Means that the type of a pathname is :unspecific.

 #2P Means that the name of a pathname is "".

 #3P Means that the type of a pathname is :unspecific and its name is "".

 #4P Means that the namestring represents a logical pathname.

Numbers

Fixnums are stored as immediate data using a two’s-complement
representation. They are 29 bits long in MCL 3.1 and 30 bits long in
MCL 4.0 (see discussion of the tagging scheme, in “Types and tag
values” on page 633). Note that eql fixnums are eq (although portable
code should not rely on this fact).
636 Macintosh Common Lisp Reference

In MCL 3.1, two internal floating-point data formats are supported. The
format used to represent instances of the Common Lisp data types
single-float, double-float, and long-float corresponds to
IEEE double or 64-bit floating-point format. Each such floating-point
number is 64 bits (8 bytes) long and consists of a sign bit, an 11-bit
binary exponent (allowing exponents in the range –1022 through 1023),
and a 52-bit significand. The significand precision is 53 bits. Floating
point numbers in MCL 4.0 are discussed below.

The format used to represent instances of the Common Lisp data type
short-float consists of 3 tag bits, a sign bit, a 5-bit binary exponent,
and a 23-bit significand (for tags, see discussion of the tagging scheme,
in “Types and tag values” on page 633). This format is similar to the
IEEE single format, but the smaller exponent restricts the range of
representable numbers (for example, the values of least-positive-
short-float and least-negative-short-float) and does not
allow the representation of denormalized numbers.

On Macintosh computers that do not have floating-point hardware,
MCL 3.1 emulates that portion of the floating-point instruction set that
it uses.

The following functions are extensions to Common Lisp.

bignump [Function]

Syntax bignump number

Description The bignump function returns a Boolean indicating whether number is a
bignum.

Argument number A number.

fixnump [Function]

Syntax fixnump number

Description The fixnump function returns a Boolean value, t if number is a fixnum,
nil if it is not.

Argument number A number.
Appendix A: Implementation Notes 637

lsh [Function]

Syntax lsh fixnum count

Description The lsh function logically shifts fixnum by count and returns the result of
the operation, which must also be a fixnum. This is the same as the
Common Lisp ash function, except that any bits shifted out of the
(currently) 29 bits of a fixnum are lost.

Arguments fixnum A fixnum.
count An integer.

Floating point numbers in MCL 4.0

MCL 4.0 does not support short floats. The Common Lisp type short-
float maps to the same type of object as double-float.

The compiler inlines the operations +, -, *, / when the operands are
known to be double-floats.

Floating-point exceptions are, for the most part, enabled and detected.
By default, all threads start up with overflow, underflow,
division-by-zero, and invalid-operation enabled, inexact-
result disabled, and rounding-mode set to nearest. The functions
get-fpu-mode and set-fpu-mode provide higher-level control over
floating point behavior.

To simplify floating point exception signaling, arithmetic-error is
now a subclass of error, rather than of simple-error. It is provided
with a :report method.

get-fpu-mode [Function]

Syntax get-fpu-mode

Description Returns a list of keyword/value pairs which describe the floating-point
exception-enable and rounding-mode control flags for the current stack-
group or process. The list is of the form:
638 Macintosh Common Lisp Reference

(:rounding-mode rounding-mode-keyword
:overflow boolean
:underflow boolean
:division-by-zero boolean
:invalid boolean
:inexact boolean)

rounding-mode-keyword must be one of :nearest, :zero, :positive, or
:negative. The boolean values indicate whether the corresponding IEEE
exception is enabled or not. Each MCL thread begins execution with the
rounding mode set to :nearest, the :overflow, :division-by-zero,
and :invalid exceptions enabled and the :inexact and :underflow
exceptions disabled.

Arguments no arguments

set-fpu-mode [Function]

Syntax set-fpu-mode &key rounding-mode overflow underflow
division-by-zero invalid inexact

Description Sets the current thread’s exception-enable and rounding-mode control
flags to the indicated values for the arguments that are supplied and
preserves the values associated with those that aren’t supplied.

set-fpu-mode returns the value that would be returned by get-fpu-mode
after these changes have been made.

If supplied, the value of rounding-mode must be one of :nearest, :zero,
:positive, or :negative.

Arguments rounding-mode rounding-mode-keyword
overflow boolean
underflow boolean
division-by-zeroboolean
invalid boolean
inexact boolean)

The following useful macros could be written with get-fpu-mode
and set-fpu-mode:
Appendix A: Implementation Notes 639

(defmacro with-fpu-mode ((&rest options) &body body)
 (let* ((old-mode (gensym)))
 `(let* ((,old-mode (get-fpu-mode)))
 (unwind-protect
 (progn
 (set-fpu-mode ,@options)
 ,@body)
 (apply #'set-fpu-mode ,old-mode)))))

(defmacro with-overflow-disabled (&body body)
 `(with-fpu-mode (:overflow nil) ,@body))

Characters and strings

MCL has built-in classes for characters and strings. The classes base-
character and extended-character are subclasses of
character. The classes base-string and extended-string are
subclasses of string.

MCL 4.0 follows the Common Lisp standard in that the :element-
type argument to the function make-string defaults to character.
However in MCL 3.1 :element-type defaults to *default-
character-type*. The initial value of *default-character-
type* is base-character.

If :element-type is not specified and :initial-element is
specified as an extended-character, the resulting string is an
extended-string.

An extended-string allocates 16 bits for each character in the string.
However, the schar function with an extended-string will not
return an extended-character if the character at the specified
position only requires 8 bits. In this case, a base-character is
returned.
640 Macintosh Common Lisp Reference

Ordering and case of characters and strings

MCL has various functions that order strings and characters, as well as
functions that transform strings and characters from upper case to
lower case and from lower case to upper case. The correct ordering and
changing the case of characters are functions of the script in which the
string or character is interpreted.

The new special variable *string-compare-script* determines
how to order strings or characters. The following functions are
extended to use the variable *string-compare-script*:
string-equalchar-equallower-case-p
string-greaterpchar-greaterpupper-case-p
string-lesspchar-lesspalpha-char-p
string-not-equalchar>alphanumericp
string-not-greaterpchar<
string-not-lesspchar>=
string>char<=
string<char-upcase
string>=char-downcase
string<=
string-upcase
string-downcase
string-capitalize

A description of the special variable *string-compare-script*
follows.

string-compare-script [Variable]

Description The value of *string-compare-script* is an integer, for example, the
value of a script constant such as #$smRoman or the value of the system
script currently in effect (i.e., #$smSystemScript). The default is
#$smSystemScript. Your system must have the specified script
installed.
Appendix A: Implementation Notes 641

The script manager

The Macintosh script manager stores strings as a mixture of 8-bit and
16-bit characters in a string, whereas Lisp can not. To account for this,
all MCL 3.0 functions that move characters between macptrs and Lisp
strings take an optional script argument. The script determines which
8-bit characters in the string referenced by the macptr are the first byte
of a 2-byte character. (For more information on 2-byte characters, see
the section "2-byte Character Encodings" in Chapter 1 of Inside
Macintosh: Text.)

If a character in a Lisp string requires more than 8 bits to represent it
and the first byte of that character is a valid first byte in the specified
script, 2 bytes are moved to the destination macptr. If the character
requires more than 8 bits to represent it and the first byte is not a valid
first byte, only the lower 8 bits are moved to the destination macptr.

The functions affected by this change are %get-string, %get-
cstring, %put-string, and %put-cstring.

Script manager utilities

The following functions and variable are used when working with the
script manager.

set-extended-string-script [Function]

Syntax set-extended-string-script script

Sets the script to use for printing extended-strings. If the script is not set
explicitly, the default is the system script if it is a 2 byte script; otherwise
the default is an installed 2 byte script. If there are no installed 2 byte
scripts, the default is nil.

Arguments script A script, as described by Inside Macintosh.

set-extended-string-font [Function]

Syntax set-extended-string-font font-spec
642 Macintosh Common Lisp Reference

Sets the font to use for printing extended strings. If not set explicitly, the
default is the #$smScriptAppFond for the extended-string script.

Arguments font-spec A font spec, as described by the MCL Reference Manual.

convert-kanji-fred [Function]

Syntax convert-kanji-fred oldpath &optional
 newpath (if-exists :supersede)

This function is used to convert files produced by KanjiFred to a format
that can be used by MCL 4.0 and 3.1.

Arguments oldpath The pathname of the file to convert.

newpath The pathname at which to store the converted file. The
default is oldpath.

if-exists A keyword describing what action to take if newpath
already exists. The allowed keywords are the same as for
copy-file.

input-file-script [Variable]

This variable can be set to a 2 byte script to be used when reading a text
file that was not created with Fred and is known to contain text in a
single 2 byte script.

String lengths

The following functions return string lengths.

byte-length [Function]

Syntax byte-length string &optional script start end

Description The function byte-length returns the length in 8-bit bytes of string. The
arguments start and end specify a subset of string.

Arguments string A Lisp string.
Appendix A: Implementation Notes 643

script The script in which the string is interpreted. The default is
#$smSystemScript, which is the system script.

start The starting position of the string count. The default is 0.

end The ending position of the string count. The default is
(length string).

pointer-char-length [Function]

Syntax pointer-char-length macptr length &optional script

Description The function pointer-char-length returns the length in characters of
the string pointed to by macptr.

This function returns three values. The first is the length in characters
required to represent the string as a Lisp structure. The second value is a
boolean value that indicates whether any 2-byte characters are necessary
to represent the string in Lisp. If the value is true, at least one 2-byte
character is necessary. The third value is a boolean that is true if length falls
after the first byte of a 2-byte character in the string pointed to by macptr.

Arguments macptr A Macintosh pointer.

length The length in bytes of the string pointed to by macptr.

script The script in which the string is represented. The default
is the system script.

%str-from-ptr-in-script [Function]

Syntax %str-from-ptr-in-script pointer length &optional script

Description Gets a Lisp string from a macptr pointer interpreted in script. The result
is an extended string if any of the characters in the source are 16 bits wide.

pointer A pointer of type macptr.

length The length in bytes of the source string.

script The script in which the string is represented. The default
is #$SmSysScript.
644 Macintosh Common Lisp Reference

Arrays

Default array contents

The :initial-element argument to make-array has no defined
default. In particular, code should not rely on the :initial-element
argument defaulting to nil.

When an array is grown using vector-push-extend or adjust-
array, the contents of newly added elements is undefined. Newly
added elements are not initialized to nil.

Array element types and sizes

Table A-2 lists the distinct types of array element that are supported.
Appendix A: Implementation Notes 645

■ Table A-2 Types of array element

Type Length (bits per element)

Only simple vectors are supported directly. All arrays of rank other
than 1 are implemented as displaced arrays. In addition to the memory
needed to store its elements, a simple vector requires 8 bytes of
overhead; a bit vector requires 9 bytes. A complex (displaced) array has
about 32+ (4* rank) bytes of overhead. The rank of an array must be
less than #x2000 (8K).

No array may have more elements than the number equal to most-
positive-fixnum (that is, 2*28-1); therefore, only fixnums are
valid array indices.

Table A-3 gives the theoretical limits on the sizes of arrays.

bit 1

character 8

double-float 64

(unsigned-byte 8) 8

(signed-byte 8) 8

(unsigned-byte 16) 16

(signed-byte 16) 16

(unsigned-byte 32) 32

(signed-byte 32) 32

t One node (32 bits per element)
646 Macintosh Common Lisp Reference

■ Table A-3 Theoretical limits on array length

Type Length limit

All these limits represent arrays requiring approximately 16 MB of
contiguous memory.

There is no limit on the size of individual dimensions of an array except
the limits imposed by the total array size.

Multidimensional arrays and arrays that were created with non-nil
values for the :displaced-to and/or the :fill-pointer
arguments to make-array are stored as two vectors, a header and a
storage vector.

displaced-array-p [Function]

Syntax displaced-array-p array

Description The displaced-array-p function returns nil if array is not a displaced
array. If it is a multidimensional array or an array created with non-nil
values for the :displaced-to and/or the :fill-pointer arguments
to make-array, the function returns two values, the storage vector and
the offset from the beginning of the storage vector to the beginning of the
storage for the array.

Argument array An array.

Example
? (setq a (make-array 10))

bit most-positive-fixnum

character #xFFFFF8

double-float #x1FFFFF

(unsigned-byte 8) #xFFFFF8

(signed-byte 8) #xFFFFF8

(unsigned-byte 16) #x7FFFFC

(signed-byte 16) #x7FFFFC

(unsigned-byte 32) #x3FFFFE

(signed-byte 32) #x3FFFFE

t #x3FFFFE
Appendix A: Implementation Notes 647

#(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)

? (setq b (make-array 5

 :displaced-to a

 :displaced-index-offset 3))

#(NIL NIL NIL NIL NIL)

? (displaced-array-p b)

#(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)

3

? (eq * a)

T

Packages

Macintosh Common Lisp, following the forthcoming ANSI Common
Lisp standard, uses the package name common-lisp instead of lisp.
The only external symbols of the COMMON-LISP package are the
approximately 900 symbols of Common Lisp.

The CCL package uses the COMMON-LISP package. Its exported symbols
consist of extensions to Common Lisp provided by Macintosh Common
Lisp. The CCL package shadows none of the Common Lisp symbols.

The COMMON-LISP-USER package uses both the CCL and the COMMON-
LISP packages.

The default value of the :use argument to make-package and to
defpackage is the value of the variable *make-package-use-
defaults*. The initial value of this variable is ("COMMON-LISP"
"CCL"). (See Common Lisp: The Language, page 263.)

Macintosh Common Lisp includes a lisp package that behaves
similarly to the one described in the first edition of Common Lisp: The
Language. However, full compatibility is not guaranteed.

The variable *autoload-lisp-package* determines whether the
LISP package is loaded when it is first referenced. The value of
autoload-lisp-package is nil. If you are running your own
code that depends on the LISP package, or using code such as PCL or
Richard Waters’s pretty printer (see Common Lisp: The Language,
Chapter 27), you may need to do one or more of the following:

■ Set the value of *autoload-lisp-package* to t. You can use the
Environment dialog on the Tools menu. When the value of this variable
is true, the :lisp package is automatically loaded when it is required.
648 Macintosh Common Lisp Reference

■ Load the file lisp-package.lisp or lisp-package.fasl from
the Library folder. This source file defines the lisp package.

If you are running your own code, convert it if possible.

When you run code that depends on the lisp package and it is not
loaded, a restart provides the opportunity to load it.

Additional printing variables

In addition to the standard Common Lisp printer variables (see
Common Lisp: The Language), Macintosh Common Lisp uses the
variables in Table A-4 to control printing.

■ Table A-4 Additional printing variables

Variable Purpose

print-simple-vector Determines how simple vectors are printed.

Default is nil; prints simple vectors according to the value
of *print-array*. If true, prints simple vectors readably.
If an integer, prints simple vectors with a length less than
the integer readably.

print-simple-bit-vector Determines how simple bit vectors are printed.

Default is nil; prints simple bit vectors according to the
value of *print-array*. If true, prints simple bit vectors
readably. If an integer, prints simple bit vectors with a
length less than the integer readably.

print-string-length Determines how strings are printed.

Default is nil; all strings are printed in full. If an integer,
strings with a length greater than the integer are printed
using an abbreviated format.

print-structure Determines whether structures are printed readably using
#S syntax.

Default is t; structures are printed in an abbreviated format.
If true, structures are printed readably.
Appendix A: Implementation Notes 649

Memory management

Macintosh Common Lisp divides the application heap into two areas: a
Lisp heap and a Macintosh heap. Most Lisp data structures (such as
cons cells, symbols, arrays, and functions) are stored in the Lisp heap;
most Macintosh data structures (such as Window records, bitmaps, and
CODE resources) are stored in the Macintosh heap.

Garbage collection

In some programming languages, memory management can be a
problem. One of the advantages of Macintosh Common Lisp (and Lisp
in general) is that you do not need to explicitly deallocate storage for
variables or other data structures; Macintosh Common Lisp handles
this automatically for you.

To implement memory management, Macintosh Common Lisp
provides a garbage collector, a small routine that periodically recycles
the memory from unneeded data structures.

Macintosh Common Lisp has two kinds of automatic memory
management, called ephemeral garbage collection and full garbage
collection.

Ephemeral garbage collection

In general, most heap-allocated objects become inaccessible soon after
they are created. The ephemeral garbage collector exploits this by
concentrating its efforts on reclaiming memory allocated to newly
created objects.

print-abbreviate-quote Determines whether lists whose first element is the symbol
quote or the symbol function are printed specially.

Default is true, the lists are printed specially. If the value is
nil, they are not..
650 Macintosh Common Lisp Reference

The ephemeral garbage collector partitions the population of all
dynamically allocated objects into three sets, called generations.
Generations are divided roughly into ages by time of creation. Objects
first go into the space allocated to the youngest generation. When that
space fills up, Macintosh Common Lisp performs an ephemeral
garbage collection on only that space, clearing it of all objects. Objects
that cannot be reclaimed are promoted to the middle generation. When
the middle generation fills up, Macintosh Common Lisp reclaims space
within its partition, promoting surviving objects to the oldest
generation.

Only when all three sets are full is a full garbage collection invoked.

The function gc-thermometer, defined in thermometer.lisp in
your Examples folder, provides a graphic display of the EGC's
behavior.

Guidelines for enabling the EGC

Ephemeral garbage collection can be enabled and disabled by calling
the function egc.

If you experience disruptive pauses while interacting with Macintosh
Common Lisp, you should consider enabling the EGC. A full garbage
collections take longer than an ephemeral garbage collection, and is
more disruptive.

However, while ephemeral collections are much briefer, they are also
much more frequent than full collections. Overall, garbage collection
uses more system resources when the EGC is enabled. Because of this,
EGC is only recomended when you need to increase your interactivity.
Compilations and other time-consuming non-interactive computations
are more appropriately performed with the EGC is disabled.

EGC in MCL 3.1

In MCL 3.1, the EGC is most effective when it can work cooperatively
with a hardware Memory Management Unit (MMU). It will be able to
do this on a 68040-based Macintosh, or on a 68030-based Macintosh
with virtual memory or the PTable system extension installed.

If MMU support is unavailable, the ephemeral garbage collector scans
all older generations to find the occasional case where such an
assignment has taken place. This overhead can be very significant in
virtual memory environments; whether or not it is acceptable in real
memory environments depends on the speed of the processor, the size
limits associated with the ephemeral generations, and the behavior and
needs of the application.

The EGC in MCL 4.0 does not require MMU support.
Appendix A: Implementation Notes 651

Controlling the EGC

The ephemeral garbage collector is said to be enabled when Macintosh
Common Lisp has been asked to use it; it is said to be active when
Macintosh Common Lisp is in fact using it. (It may be enabled but
inactive when, for instance, free space in the heap is less than the size
limit of the youngest generation.)

The following functions can be used to control and configure the
ephemeral garbage collector.

egc [Function]

Syntax egc enable-p

Description The egc function attempts to enable and activate the ephemeral garbage
collector if the value of enable-p is true. (See the discussion of enabling and
activation preceding this definition.) If the value of enable-p is nil, egc
disables the ephemeral garbage collector. The function returns t if the
ephemeral garbage collector is enabled after performing the operation,
nil otherwise.

Argument enable-p A Boolean value.

egc-enabled-p [Function]

Syntax egc-enabled-p

Description The egc-enabled-p function returns t if the ephemeral garbage
collector is enabled and returns nil otherwise.

egc-active-p [Function]

Syntax egc-active-p

Description The egc-active-p function returns t if the ephemeral garbage collector
is active and returns nil otherwise.

configure-egc [Function]

Syntax configure-egc generation-0-size generation-1-size generation-2-size
652 Macintosh Common Lisp Reference

Description If the ephemeral garbage collector is not currently enabled, the
configure-egc function sets the size limits of the ephemeral
generations as indicated and t is returned. If the ephemeral garbage
collector is enabled, the current values of the size limits are not affected
and nil is returned.

The arguments should be nonnegative integers that specify the size limits in
kilobytes that the ephemeral garbage collector should use for the three
ephemeral generations.

Arguments generation-0-size A positive integer.
generation-1-size A nonnegative integer.
generation-2-size A nonnegative integer.

egc-configuration [Function]

Syntax egc-configuration

Description The egc-configuration function returns three integer values that
express the size limits in kilobytes associated with ephemeral generations
0, 1, and 2.

Enabling the EGC programmatically

You can decide programmatically whether to enable the EGC using the
MCL function egc-mmu-support-available-p. This function is
useful in applications intended for users with unknown Macintosh
configurations.

egc-mmu-support-available-p [Function]

Syntax egc-mmu-support-available-p

Description In MCL 4.0, this function always returns true.

In MCL 3.1, This function returns true if MCL determines that the system has
a 4K or 8K page size.
Appendix A: Implementation Notes 653

Full garbage collection

Macintosh Common Lisp uses a mark/compact/forward garbage
collector. Garbage collection occurs automatically as memory is
needed. This can happen in response to a Macintosh Operating System
call or to a memory request by Macintosh Common Lisp. You can
invoke garbage collection manually through the function gc.

The garbage collector in MCL 3.1 optionally performs a limited amount
of event processing, sufficient to partially handle suspend and
resume events and to allow background tasks to run. The garbage
collector’s event handling does not handle window update events. It
simply draws a gray pattern into regions it is expected to update and
notifies Lisp’s low-level event dispatcher that windows need to be
updated. It also does not handle the conversion of the Clipboard on
MultiFinder context switches.

gc-event-check-enabled-p [Function]

Syntax gc-event-check-enabled-p

Description The gc-event-check-enabled-p function returns a Boolean value,
indicating whether Macintosh Common Lisp performs event processing
during garbage collection. A value of t, the default, means that event
processing is turned on during garbage collection.

set-gc-event-check-enabled-p [Function]

Syntax set-gc-event-check-enabled-p boolean

Description The set-gc-event-check-enabled-p function turns garbage-
collector event processing on or off according to the value of boolean.

Argument boolean A flag. If the value of boolean is true, Macintosh Common
Lisp performs event processing during garbage
collection.

Garbage Collection Statistics

The following functions provide information on the garbage collections
that have been performed in the course of a Lisp session.
654 Macintosh Common Lisp Reference

gctime [Function]

Syntax gctime

Description The gctime function returns five integer values:

■ the total number of milliseconds spent in all full and ephemeral
garbage collections in the current session

■ the total number of milliseconds spent in all full garbage collections in
the current session

■ if the ephemeral garbage collector is enabled, the total number of
milliseconds spent in all ephemeral collections of generation 2 in the
current session. If the EGC is not enabled, this value
is 0.

■ if the ephemeral garbage collector is enabled, the total number of
milliseconds spent in all ephemeral collections of generation 1 in the
current session. If the EGC is not enabled, this value
is 0.

■ if the ephemeral garbage collector is enabled, the total number of
milliseconds spent in all ephemeral collections of generation 0 in the
current session. If the EGC is not enabled, this value
is 0.

gccounts [Function]

Syntax gccounts

Description The gccounts function returns five integer values:

■ the total number of full and ephemeral garbage collector invocations in
the current session

■ the total number of full garbage collector invocations in the current
session

■ if the ephemeral garbage collector is enabled, the total number of times
the ephemeral garbage collector has been invoked on generation 2 in
the current session. If the EGC is not enabled, this value is 0.

■ if the ephemeral garbage collector is enabled, the total number of times
the ephemeral garbage collector has been invoked on generation 1 in
the current session. If the EGC is not enabled, this value is 0.

■ if the ephemeral garbage collector is enabled, the total number of times
the ephemeral garbage collector has been invoked on generation 0 in
the current session. If the EGC is not enabled, this value is 0.
Appendix A: Implementation Notes 655

Termination

Termination1 is a facility for running an action when an object is about
to be garbage-collected. This action can perform auxiliary clean-up
operations associated with the disposal of the object.

MCL 4.0 provides a full termination facility. MCL 3.1 provides a modest
termination facility that works only for macptrs.

Termination in MCL 4.0

Termination of an object in MCL 4.0 proceeds in four stages:

■ 1. The object is registered for termination. This is accomplished by
calling terminate-when-unreachable on the object and on a
termination function.

■ 2. During garbage collection, it is noticed that the object has become
unreachable. The object is moved to the termination queue, and
removed from any weak hash-tables which contain it.

■ 3. Sometime after garbage collection, the termination queue is
drained, by calling the termination functions on the corresponding
objects in the termination queue. This may be done automatically or
under program control.

■ 4. On the next garbage collection, if the object is still unreachable (i.e.
if the termination functions have not generated live pointers to the
object), it is garbage collected. If the object has been made reachable by
one or more of the termination functions, it will not be garbage
collected, and it will no longer be registered for termination; it must be
reregistered for termination if that is desired.

Note that termination is a property of an object, not a class. If you want
all the instances of a class to subject to termination, you must register
each of the instances individually, for example in an initialize-
instance method.

1.In some languages, this functionality is termed “finalization.” MCL uses the term “termination” to
avoid confusion with the Common Lisp concept of class finalization. The MCL termination
mechanism is modeled on the mechanism designed and implemented for Apple Dylan.
656 Macintosh Common Lisp Reference

terminate-when-unreachable [Function]

Syntax terminate-when-unreachable object &optional
(function terminate)

Description Registers object for termination with the termination function. function
should be a function of one argument. function will be called with object as
its argument when object becomes unreachable and the termination queue
is drained.

Each call of terminate-when-unreachable on a single (eq) object
registers a new termination function. All will be called when the object
becomes unreachable. The order in which they will be called is
unspecified. If terminate-when-unreachable is called multiple times
with the same object and same termination function, it is undefined
whether the termination function will be called once or multiple times.

The ability to associate multiple termination functions with a single object
may be removed in future versions of MCL.

Arguments object Any object.
function A function of one argument.

terminate [Generic Function]

Syntax terminate object

Description The default termination function. A predefined method on t does
nothing. Programmers should add methods for their own objects, as
needed.

In normal operation, this function is called by drain-termination-
queue. It should not generally be called explicitly by the programmer.

terminate [Method]

Syntax terminate (object t)

Description The default method ignores object and returns nil.
Appendix A: Implementation Notes 657

drain-termination-queue [Function]

Syntax drain-termination-queue

Description Drains the termination queue. That is, calls the termination functions for
every object that has become unreachable.

If *enable-automatic-termination* is true (the default), drain-
termination-queue is called automatically on the first event-check
following each garbage collection. In this case, it does not need to be called
by the user program.

enable-automatic-termination [Variable]

Description If true (the default) drain-termination-queue will be automatically
called on the first event check after the garbage collector runs. If you set
this to false, you are responsible for calling drain-termination-
queue.

Note that in the future built-in features of MCL may rely on termination,
so you shouldn’t simply shut it off if you decide it’s no longer needed for
your objects.

cancel-terminate-when-unreachable [Function]

Syntax cancel-terminate-when-unreachable object &optional
 function

Description Removes the effect of the last call to terminate-when-unreachable
for object and function (both tested with eq). Returns true if it found a
match. If the object has been moved to the termination queue since
terminate-when-unreachable was called, a match will not be found.

If function is nil or unspecified, then it is not used in determining a match.
Instead, the most recent termination function installed for the object is
removed.

termination-function [Function]

Syntax termination-function object
658 Macintosh Common Lisp Reference

Description Returns the function passed to the last call of terminate-when-
unreachable for object. If the object has been moved to the termination
queue since terminate-when-unreachable was called, nil is
returned.

Termination in MCL 3.1

The file “macptr-termination.lisp” in the Library folder
provides a simple termination mechanism for MCL 3.1.

This mechanism works with pre- and post-gc hooks. Each hook is a
series of functions which are called just before or just after a garbage
collection.

The pre-gc hooks are not guaranteed to be called. They will only be
called if an event-dispatch occurs between the time memory is depleted
and the time the garbage collection occurs.

By default, the hooks are only called on full garbage collections.

add-pre-gc-hook [Function]

delete-pre-gc-hook

add-post-gc-hook

delete-post-gc-hook

Syntax add-pre-gc-hook hook

Description These functions add and remove pre- and post-gc hooks. Because hooks
are compared with EQ, it is best to pass a symbol that has a global function
definition.

set-post-egc-hook-enabled-p [Function]

Syntax set-post-egc-hook-enabled-p value

Description Enables the running of post-gc hooks on ephemeral collections.
Appendix A: Implementation Notes 659

post-egc-hook-enabled-p [Function]

Syntax post-egc-hook-enabled-p

Description Returns true if the post gc hook is to be called after EGC as well as after
full GC.¨

Macptrs and termination in MCL 3.1

The post-gc hook facility can be used to create terminable Macptrs in
MCL 3.1.

make-terminable-macptr [Function]

Syntax make-terminable-macptr macptr termination-function

Description Creates and returns a terminable macptr. It points at the same Mac Heap
address as the macptr argument. When the return value becomes
scavengeable (that is no longer accessible in the Lisp heap), it calls the
termination-function with a single argument, the returned macptr. If the
termination-function’s return value is non-nil, it frees the macptr.
Otherwise, it assumes that you decided not to terminate it, and calls the
termination-function again the next time the GC runs and it is
scavengeable.

deactivate-macptr [Function]

Syntax deactivate-macptr macptr

Description If macptr is an active gc-able macptr or terminable macptr, make it
inactive by disabling its intention to take termination action when it is
reclaimed, and return t. If it is either an ordinary macptr or an already-
inactive gc-able macptr or a terminable macptr, return nil. If it is not
a macptr, signal an error.
660 Macintosh Common Lisp Reference

Evaluation

Macintosh Common Lisp offers two evaluator options: a standard
evaluator and a compiling evaluator.

■ The standard evaluator conforms to Common Lisp standards as
described in the second edition of Common Lisp: The Language, Chapter
20. However, evalhook and applyhook were removed from the
Common Lisp standard by vote of the X3J13 committee in November
1989 (after Common Lisp: The Language went to press). Macintosh
Common Lisp still supports them, but they are deprecated.

■ The compiling evaluator compiles nontrivial expressions and then
runs them. For looping or self-recursive constructs, the compiling
evaluator is much faster (up to several hundred times). The compiling
evaluator is used when the variable *compile-definitions* is
non-nil.

In the default environment, the system uses the compiling evaluator;
that is, the value of *compile-definitions* is t.

The following variable governs the behavior of the evaluator.

compile-definitions [Variable]

Description The *compile-definitions* variable determines whether MCL
expressions are compiled. (See the introductory remarks in this section.)

If the value of this variable is true (the default), then all function definitions and
most top-level forms are compiled.

If the value of this variable is nil, then no compilation is performed.

The value of this variable can be toggled in the Environment dialog box on the
Tools menu.

Compilation

This section describes some of the behavior of the MCL compiler and
describes some means of influencing that behavior.
Appendix A: Implementation Notes 661

Tail recursion elimination

The MCL compiler attempts to minimize the stack usage of compiled
functions by being properly tail recursive. A function is tail recursive if
it returns the value(s) of the last function it calls as its own. In that case,
the stack space allocated for the function’s returned value(s) can be
deallocated before it begins execution.

One side effect of the elimination of tail recursion is that, in general, the
Stack Backtrace tools display only a portion of the execution history,
since those function calls in which tail recursion was eliminated are no
longer awaiting return values.

The compiler can be advised that tail recursion should never be
eliminated from calls to certain single-valued global functions. Do this
by adding the names of those functions to the list that is the value of the
variable ccl::*nx-never-tail-call*. You can also use
customized compiler policy objects to control when the compiler
eliminates tail recursion. (See “Compiler policy objects” on page 662.)

Self-referential calls

Within a named function, the compiler may assume that a call to a
function of the same name refers to the same function (unless that
function has been declared not inline). Although this approach allows
such calls to be compiled slightly more efficiently, debugging tools such
as trace and advise violate this assumption.

This aspect of the compiler’s behavior can also be controlled through
appropriate use of compiler policy objects.

Compiler policy objects

A compiler-policy object is a data structure whose components
advise the compiler of the desirability of performing (or avoiding)
certain optimizations. Usually, compiler policy objects specify how
optimize declarations are to be interpreted. (For optimize
declarations, see Common Lisp: The Language.)

Separate compiler policy objects are used for file compilation and for
interactive compilation, although the default values of these objects
specify identical behavior.
662 Macintosh Common Lisp Reference

The function new-compiler-policy is used to create a compiler
policy object and to override the implementation’s default behavior.
The functions set-compiler-policy and current-compiler-
policy set and return the compiler policy used for interactive
compilation (including the use of the compile function). The functions
set-current-file-compiler-policy and current-file-
compiler-policy set and return the policy object used to compile
functions that will be saved in fasl files.

compiler-policy [Class name]

Description The compiler-policy class is the class of compiler policy objects.

new-compiler-policy [Function]

Syntax new-compiler-policy &key :allow-tail-recursion-
elimination :inhibit-register-allocation :trust-
declarations :open-code-inline :inhibit-safety-
checking :inhibit-event-polling :inline-self-calls
:allow-transforms :force-boundp-checks :allow-
constant-substitution

Description The new-compiler-policy function creates and returns a new
compiler policy in which the default specifications of behavior are
overridden by the values associated with the indicated keyword
arguments.

Each of these keywords may take one of the following values:

nil, which specifies that the associated behavior is suppressed

t, which specifies that the associated behavior is performed

a function that takes arguments as described here and returns a Boolean
value

Unless otherwise noted, the functions are called with a (possibly null) lexical
environment as their lone argument. To determine what value to return, they
may reasonably use functions such as declaration-information to
extract information about the optimize declarations (and other declarations)
in effect in that environment.

Setting a new compiler policy completely shadows any existing policy.
Appendix A: Implementation Notes 663

Arguments :allow-tail-recursion-elimination
When this value is nil or a function that inspects the
environment and returns nil, the compiler does not
eliminate tail recursion. The default value is a function
that returns true unless the value of the debug optimize
quantity in the environment is 3.

:inhibit-register-allocation
When this value is true or a function that returns true, the
compiler does not allocate frequently used values in
registers. The default value is a function that returns true
when the value of the debug optimize quantity in the
environment is 3.

:trust-declarations
When this value is true or a function that returns true and
the value of the safety optimize quantity in the
environment is not 3, the compiler attempts to exploit
type declarations to produce faster and/or smaller code.
If those declarations are incorrect, the resulting code may
show unpredictable behavior. The default value is a
function that returns true if, within the environment, the
value of the speed optimize quantity is not less than the
value of the safety optimize quantity.

:open-code-inline
When this value is true or a function that returns true and
the compiler sees a call to a function that has been
declared inline or a call to a primitive operation
implemented in the MCL kernel, the compiler may
replace that call with a larger (but possibly faster)
sequence of instructions. The default value is a function
that returns t if, within the environment, the value of the
speed optimize quantity is two or more units greater
than the value of the space optimize quantity.

:inhibit-safety-checking
When this value is true or a function that returns true and
the value of the safety optimize quantity in the
environment is not 3, the compiler is licensed to omit safety
checks. (When the compiler performs safety checks,
incorrect programs cause errors to be signaled.) The default
value is a function that returns t if, within the environment,
the value of the speed optimize quantity is 3 and the value
of the
safety optimize quantity is 0.
664 Macintosh Common Lisp Reference

:inhibit-event-polling
When this value is true or a function that returns true, the
compiler may omit instruction sequences that poll for
events from loops that are otherwise uninterruptible. The
default value is a function that returns t if, within the
environment, the value
of the speed optimize quantity is 3 and the
value of the safety optimize quantity is 0.

:inline-self-calls
When this value is true or a function that returns true, the
compiler may assume that within a globally named
function, calls to a global function of the same name may
be compiled without reference to the function cell of the
symbol that names that function. The default value is a
function that returns t unless the value of the debug
optimize quantity in the environment is 3.

:allow-transforms
When this value is true or a function that returns true, the
compiler expands compiler macros and may perform
other source-to-source transforms. The default value is a
function that returns t unless the value of the
compilation-speed optimize quantity in the
environment is 3 or the value of the debug optimize
quantity in the environment is 3.

:force-boundp-checks
When this value is true or a function that returns true or
when the value of the safety optimize quantity is 3, the
compiler ensures that variables are bound before
referencing them. If a function is provided, it should take
two arguments, a symbol that names a variable and a
lexical environment. Ordinarily, the compiler omits
checking the binding of the variable with boundp if the
variable reference appears within the scope of a special
binding of that variable, or if the reference appears in a
file that is being compiled with compile-file and
appears after a defvar or defparameter form that
defined that variable.

:allow-constant-substitution
When this value is true or a function that returns true, the
compiler is allowed to substitute the value of a named
constant for a reference to the constant. The default value
is a function of three arguments: a symbol that names a
constant, the value of that constant, and the current lexical
environment. The function ignores those arguments and
returns t.
Appendix A: Implementation Notes 665

current-compiler-policy [Function]

Syntax current-compiler-policy

Description The current-compiler-policy function returns the current
compiler-policy used by interactive compilation.

set-current-compiler-policy [Function]

Syntax set-current-compiler-policy &optional policy

Description The set-current-compiler-policy function sets the default
compiler-policy used by interactive compilation to policy. If policy is
nil or unsupplied, a copy of the default compiler policy is used.

Argument policy A compiler policy.

current-file-compiler-policy [Function]

Syntax current-file-compiler-policy

Description The current-file-compiler-policy function returns the current
compiler-policy used by file compilation.

set-current-file-compiler-policy [Function]

Syntax set-current-file-compiler-policy &optional policy

Description The set-current-file-compiler-policy function sets the default
compiler-policy used by file compilation to policy. If policy is nil or
unsupplied, a copy of the default compiler policy is used.

Argument policy A compiler policy.

ignore-if-unused [Declaration]

Syntax ignore-if-unused
666 Macintosh Common Lisp Reference

Description The ignore-if-unused declaration behaves the same way as ignore,
but does not signal a warning if the variable is used. This declaration is
usually used in macroexpansions.

Listener Variables

The following variables are related to the behavior of the Lisp Listener.

top-listener [Variable]

Description The *top-listener* variable the Listener of the current process.

listener-default-font-spec [Variable]

Description The *listener-default-font-spec* variable specifies which font is
used when new Listener windows are opened. The initial value is
("Monaco" 9 :PLAIN).

listener-window-position [Variable]

Description The *listener-window-position* variable specifies a point
indicating the position used when new Listener windows are created. The
user may set this variable.

Example

Here is an example of setting this variable. (The point-string and
make-point functions are documented in “MCL functions relating to
points” on page 71.)
? *listener-window-position*

19660850

? (point-string *listener-window-position*)

"#@(50 300)"

? (setf *listener-window-position* (make-point 20 300))

19660820
Appendix A: Implementation Notes 667

listener-window-size [Variable]

Description The *listener-window-size* variable specifies a point indicating the
size used when new Listener windows are created. The user may set this
variable.

terminal-io [Variable]

DescriptionThe initial binding of this stream prints to the Listener which is the
value of *top-listener*. If there is no Listener, any attempt to write to
terminal-io creates a new Listener.

Patches

The following functions are used to load MCL patches.

load-patches [Function]

Syntax load-patches &optional source-dir all

Loads some or all of the compiled files in the patch file directory, and
optionally sets a patch version number which determines the version
specified in the vers 1 resource created when save-application is
called. The patches directory is a folder whose name is of the form
“Patches x.y”, where x and y are the major and minor version numbers
of MCL (for example, “Patches 3.1b1” or “Patches 4.0”).

If all is nil, only new patches are loaded. A patch is considered to be
new if its name (excluding file extension) ends in “pn”, where n is a
number greater than the current patch version. The current patch
version is determined from the vers 1 resource. The patch version
number will be set to the highest value of n encountered, and is
returned by load-patches if set.

If all is true, all patches are loaded and the patch version is not set.

Arguments source-dir The directory containing the patch file directory. The
default value for this argument is the value of the form
(full-pathname "ccl:" :no-error nil).
668 Macintosh Common Lisp Reference

all If true, load all compiled files in alphabetical order, and
don’t set the patch version number. If nil load only
compiled files with names as specified above, and set the
patch version number. The default is nil.

load-all-patches optional source-dir [Function]

Syntax load-all-patches &optional source-dir

Loads all compiled files from a patches directory by executing (load-
patches source-dir t) and resets the current patch version to nil.
Returns nil.

Arguments source-dir The directory containing the patch file directory. The
default value for this argument is the value of the form
(full-pathname "ccl:" :no-error nil).

Miscellaneous MCL expressions

The following MCL expressions provide miscellaneous useful
functionality not in Common Lisp.

.fasl-pathname [Variable]

Description The *.fasl-pathname* variable contains the default pathname
extension to use for compiled files. In MCL 4.0 it is#P".pfsl" and in
MCL 3.1 it is#P".fasl".

always-eval-user-defvars [Variable]

Description The *always-eval-user-defvars* variable determines how
Macintosh Common Lisp treats the evaluation of defvar.

If an entire buffer or a selection in a buffer is evaluated, defvar is never
equivalent to defparameter.

If the value of this variable is true, then defvar is equivalent to defparameter
when evaluated as a single expression from a Fred buffer or when typed to the
Listener.
Appendix A: Implementation Notes 669

If the value of this variable is nil (the default), then defvar acts in the normal
Common Lisp way (see Common Lisp: The Language, pages 86–87).

require-type [Function]

Syntax require-type argument type

Description The require-type function is like the Common Lisp check-type
macro, except that it returns a value rather than using setf, and so can be
done entirely not inline. If argument is of the same type as type, require-
type returns argument. If not, it signals an error.

Arguments argument Any argument.
type A type.

Example
? (require-type (front-window) 'window)

#<LISTENER "Listener" #x42DDB1>

? (require-type (target) 'listener)

> Error: value #<WINDOW "Inspector Central" #x4618A1> is not
of the expected type LISTENER.

structure-typep [Function]

Syntax structure-typep form type

Description The structure-typep function returns t if form is of the given structure
type type or if it includes type. Otherwise it returns nil. This function is
used by defstruct predicates.

Arguments form Any form.

type A type.

structurep [Function]

Syntax structurep form

Description The structurep function returns t if the given object is a named
structure; otherwise it returns nil.

Argument form An MCL form.
670 Macintosh Common Lisp Reference

loading-file-source-file [Variable]

Description The *loading-file-source-file* variable is bound to the
namestring of the file containing the source code while load is loading a
source code file or a fasl file. The value of this variable is either the name
of the file itself if it is a source code file, or the name of the file that was
compiled to create it if it is a fasl file. Its default value is nil.

hide-windoids-on-suspend [Variable]

Description Controls whether windoids are hidden automatically when MCL is
suspended. If set to true, they are hidden on suspend events and shown
on resume events. The default value is t.

machine-owner [Function]

Syntax machine-owner

Description returns the “Owner Name” from the Sharing Setup control panel if it can
be determined, otherwise returns "unspecified".

pascal-full-longs [Variable]

Description Controls whether or not defpascal functions use bignums to get full 32-
bit (signed) arguments. If set to true, bignums are used. The default value
is nil.

preferences-file-name [Variable]

Description The name of the preferences file, normally "MCL Preferences".

tool-back-color [Variable]

Description Controls the background color of the tools dialog boxes. It can be set to any
value returned by user-set-color or any value suitable as an
argument to make-color.
Appendix A: Implementation Notes 671

tool-line-color [Variable]

Description Controls the color of the lines dividing the tools dialog boxes. It can be set
to any value returned by user-set-color or any value suitable as an
argument to make-color.

gestalt [Function]

Syntax gestalt selector &optional bitnum

Description If bitnum is supplied and non-nil, gestalt returns true if that bit is set
in the attribute flags; if nil or not supplied, gestalt returns the
attribute flags as usual.
672 Macintosh Common Lisp Reference

673

Appendix B:

Workspace Images

Contents

The Image Facility / 674
The Save Application tool / 674
The Save Image Command / 676
Forms Related to Images / 676

Removing Macintosh pointers / 679

This appendix describes a utility that you can use to save images of running
MCL environments. These images can be customized MCL development
environments or prototype stand-alone applications.

The Image Facility

This chapter describes a utility that you can use to save images of
running MCL environments. These images can be customized MCL
development environments or prototype stand-alone applications.

◆ Note: The MCL license agreement does not allow redistribution of
applications created with the image facility. The MCL Redistribution
Kit is used for creating distributable applications. It includes a number
of additional tools for optimizing these stand-alone applications.

To create an image, you first arrange your Lisp environment just as you
want it, by loading files, etc. You then select the Save Application… or
Extensions/Save Image… command from the Tools menu, or call the
save-application function.

Some state cannot be saved and restored automatically. In particular,
data on the Macintosh heap, and pointers to such data, cannot be saved
and restored. Such data must be disposed of in the process of creating
the image, and then recreated when the image is launched. *lisp-
cleanup-functions*, *save-exit-functions*, def-load-
pointers, and *lisp-startup-functions* are used for this
purpose.

In addition to using the image facility, you can customize your Lisp
environment with the Preferences dialogs and with an init file.

An image which is not intended to be used as a Lisp development
environment will probably want to specify a different application class
(as described in “Application class and built-in methods” on page 394),
and may also want to define a new toplevel-function method for
that class. For example, the built-in toplevel-function method for
the lisp-development-system application class loads an init-file
and MCL preferences file, actions which are likely inappropriate for
your application.

The Save Application tool

The Save Application tool provides a graphical interface and slightly
different options than the save-application function. When the
Save Image button in selected, an image is saved and MCL returns to
the Finder.
674 Macintosh Common Lisp Reference

■ Figure 1-10 The Save Application dialog box

■ The application class provides a value for *application* in the
image. lisp-development-system is for making customized MCL
environments. Other subclasses of application are used for stand-
alone application prototypes. See “Applications and Apple Events” on
page 392 for a description of these variables and classes.

■ The menubar allows you to specify the menubar to install when the
image is restarted. The default is the MCL menubar, but if you have
defined your own menubar using the Interface Toolkit, you can add it.

■ The error handler specifies the response to unhandled errors. The
choices are to pop up an error dialog, to pop up a Listener, or to Quit
the application. The error dialog is the default.

■ The toplevel function is a function to call when the image has been
restarted and Macintosh pointers have been restored. In general, this
should be a function of no arguments. As a special case, if toplevel-
function is specified, it will be called on the current application class
and init-file when the image is restarted.

■ The init file specifies the name of a file to load when the image is
restarted.

■ The minimum size and preferred sizes specify components of the size
resource, which control how much memory the Finder will allocate for
the image when it is restarted. MCL calculates and suggests default
values for these numbers.

■ The Application signature signature is used by the OS to identify the
application, associate it with icons and document files, etc.
Appendix B: Workspace Images 675

■ Disable compiler, if checked, disables the MCL compiler in the image.
This allows you to test whether your application can run without the
compiler, while still allowing you to use the development tools for
debugging. This option is useful when testing and preparing an
application for standalone distribution.

■ Clear CLOS caches, if checked, flushes the CLOS caches before saving
the image. This makes the image somewhat smaller, and makes it
restart somewhat more quickly. On the downside, the image will run
more slowly when it first restarts, as the caches get refilled.

■ The resource file specifies a file of resources which should be copied
into the resource fork of the image (along with the standard MCL
resources) when the image is saved.

See the documentation of the save-application function page 677
for more details on the saving of process involved in saving an image.

The Save Image Command

The Save Image… command on the Extensions submenu of the Tools
menu provides a shortcut for saving an image of a Lisp session. It may
be used when you want to save out a snapshot of your current Lisp
session quickly and without much customization.

The command prompts the user to choose a file name for the saved
image. It then calls save-application with the following
arguments:

pathname The file name chosen by the user.
:size A value computed by using the largest numbered
SIZE resource values, and adding the amount of memory
that has been consumed since the first MCL extension
was loaded.

Forms Related to Images

The following functions, variables, and macros are used to
programmatically create saved images, and to control the exact
behavior of images when the are created and restarted. See also the
description of toplevel-function on page 396.
676 Macintosh Common Lisp Reference

save-application [Function]

Syntax save-application pathname &key :toplevel-function
:creator :excise-compiler :size :resources :init-file
:clear-clos-caches :menubar :error-handler
:application-class :memory-options

Description The save-application function creates a stand-alone image
containing the functionality of the current Lisp environment. When
save-application is finished, Macintosh Common Lisp exits to the
Finder.

Before saving an image, save-application closes all windows, takes down
and remembers the current menu bar, and disposes of other pointers to the
Macintosh heap. It then executes all the functions on the list *save-exit-
functions*. Finally, Macintosh Common Lisp performs a garbage collection
and saves the heap image.

You can add functions to the list *save-exit-functions*. You may wish
to do this if you want to save and restore a certain state in a particular way.

When a heap image is restarted, Macintosh Common Lisp restores Macintosh
pointers used by the system, resets the logical hosts "ccl:" and "home:",
and reinitializes some system configuration variables. Then it runs all the
functions specified by def-load-pointers in the order they were specified.

Arguments pathname A pathname for the image to be created. If a file with that
name already exists, Macintosh Common Lisp deletes it
before save-application is performed.

:toplevel-function
A function of no arguments to call when the image
restarts. The default is a function which calls toplevel-
function on the current application class and init-file.

:creator The mac-file-creator os-type for the saved
application. The default is :CCL2. Set it to something else
if you do not want the Finder to consider your saved
application the creator of all your MCL files.

:excise-compiler
An argument specifying whether to disable the compiler
in the resulting application. If the value of this keyword is
true, the compiler is disabled. Its default value is nil.
Note: Code that calls external functions needs to be
compiled if it is to run in an application with the compiler
excised. Attempting to intrepret such functions will
invoke the compiler, and error if the compiler is not
present.
Appendix B: Workspace Images 677

:size A size specification, which is either a nonnegative integer or a list
of two nonnegative integers: (preferred-size minimum-size). If
present, this argument sets the preferred and minimum partition
sizes (in bytes) in the application’s SIZE (-1) resource. Any
SIZE(0) resources that the Finder may have added to
Macintosh Common Lisp are not copied to the resulting
application.

:resources A list of resource specifications, where each resource
specification is a list of the form (data resource-type resource-id
&optional resource-name).
If :resources is specified, any resources matching resource-type
and resource-id are not copied from Macintosh Common Lisp to
the resulting application. If data is non-nil, this specification
causes data to be added as a resource of the specified type and ID.
A resource specification can also be a symbol or function, in
which case funcall will be run on it with a single argument, the
name of the file being saved. When the function is called, the
current resource file will be the resource file of the application
being saved.

:init-file An argument specifying the pathname of an init file to load
when the MCL image is started, or nil (the default). If the
argument is nil, the result of calling (application-init-
file *application*) is used. application-init-file
returns "init" when called on lisp-development-
environment; it returns nil when called on application.
The init file need not be in the same folder as Macintosh
Common Lisp; you can specify any pathname you wish.

:clear-clos-caches
An argument specifying whether caches are cleared when
the application is saved. The default value is true.

:menubar A list of menu objects. set-menubar will be called with
the specified menubar before the image is saved

:error-handler
one of the keywords :dialog :listener :quit
:quit-quietly. If this argument is specified, the hide-
listener-support module will be loaded, and the
application-error method will perform the specified
action when errors occur.

:application-class
A class or class name. *application* will be set to an
instance of the specified class before the image is saved

:memory-options
A list of keyword/value pairs spcifying the contents of
the LSIZ 1 resource for the application. The following
keys and default values are supported:
:mac-heap-minimum 102400

:mac-heap-maximum 409600

:mac-heap-percentage 5
678 Macintosh Common Lisp Reference

:low-memory-threshold 24576

:copying-gc-threshold 2147483648

:stack-maximum 184320

:stack-minimum 32768

:stack-percentage 6

MCL 4.0 ignores the :copying-gc-threshold,
:stack-minimum, :stack-maximum, and :stack-
percentage arguments. They are stored in the LSIZ
resource, but never used. MCL 3.0 ignores the
:copying-gc-threshold argument.

Example

Here is an example of saving an application using the :resources
keyword.

(eval-when (:compile-toplevel :execute :load-toplevel)

 (require :resources))

(defun copy-my-apps-resources (resource-file)

 (declare (ignore resource-file))

 (let ((refnum (#_CurResFile)))

 (with-open-resource-file (my-refnum "My App.r")

 ...)))

(save-application "My App" :resources
 'copy-my-apps-resources)

Removing Macintosh pointers

An important restriction on saved images is that no data on the
Macintosh heap is preserved across saves and restarts. When you save
an application, any pointers or handles to the Macintosh heap become
invalid. For this reason, you should dispose of all Macintosh handles
and pointers before doing save-application.

If your program maintains pointers to the Macintosh heap, you should
deallocate these with a function included on the list *save-exit-
functions*. You can then reinitialize the pointers and handles with
functions specified by def-load-pointers.
Appendix B: Workspace Images 679

◆ Note: Leftover Macintosh pointers in a heap image can cause system
crashes and other erratic behavior.

The def-load-pointers macro can be used to allocate memory on
the heap during startup.

lisp-cleanup-functions [Variable]

Description The *lisp-cleanup-functions* variable contains a list of functions
of no arguments on which funcall is run just before Macintosh Common
Lisp exits (via quit or save-application). These functions are called
just after the windows are closed.

When saving an application, the functions in *lisp-cleanup-functions*
are run, then the functions in save-exit-functions* are run.

save-exit-functions [Variable]

Description The *save-exit-functions* variable contains a list of functions to be
called when an image is saved. These functions should perform any
preparation necessary for the image saving. The functions are called in the
order in which they appear in
the list.

When saving an application, the functions in *lisp-cleanup-functions*
are run, then the functions in *save-exit-functions* are run.

def-load-pointers [Macro]

Syntax def-load-pointers name arglist &body body

Description The def-load-pointers macro is usually used to allocate memory on
the Macintosh heap. It associates name with #'(lambda arglist . body) in
a list. If name is already on the list, the macro replaces it. If it is not, def-
load-pointers adds name and its function to the list and runs funcall
on it.

When Macintosh Common Lisp starts up, it calls the functions specified by
def-load-pointers in the order in which they were specified on the list.
This occurs before the init file is loaded.

Arguments name The name to associate with a function.
680 Macintosh Common Lisp Reference

arglist The argument list of the function. The function is called
with no arguments, hence this argument should always
be nil.

body The body of the function.

lisp-startup-functions [Variable]

Description The *lisp-startup-functions* variable contains a list of functions
of no arguments on which funcall is run after Macintosh Common Lisp
starts, just before it enters the top-level function (usually the Listener’s
read loop). The functions contained in *lisp-startup-functions*
are run after the functions specified by def-load-pointers and before
the init file is loaded. The functions are called in reverse order from the
order in which they appear in the list.
Appendix B: Workspace Images 681

682 Macintosh Common Lisp Reference

683

Appendix C:

SourceServer

Contents

SourceServer / 684
Setting up SourceServer / 684
The SourceServer menu / 685

Notes / 686

This appendix describes an MCL interface to SourceServer, a source code
control system.

SourceServer

SourceServer is an application that allows development environments
and other applications to access MPW Projector project management
capabilities via Apple Events. Development environments and
applications have access to the full functionality of Projector including
creating project databases, as well as checking in and out individual
files. MCL, MPW and other development environments can share the
same project database using SourceServer. A copy of SourceServer can
be found in the “Developer Essentials” folder on the MCL 3.9 CD. The
latest version is always available on E.T.O. (Essentials - Tools - Objects),
a CD-ROM subscription series distributed by Apple through APDA.
See MPW Projector documentation for an overview of what Projector
and, by implication, SourceServer are all about.

The interface to SourceServer is adapted from a version in use by the
Dylan team at Apple. It was created for a demo at WWDC and included
in "Other goodies from Apple" on the MCL 2.0 CD. It has been
improved by the folks at RSTAR, Inc. and by Digitool. It is an
application in progress, but it is nonetheless useful. The best tested and
most stable work style for SourceServer is to check files out read-only
and then make them "modify read only" on your local disk,.

Setting up SourceServer

There are two files in the SourceServer folder that you should
customize. The file initialize-user.lisp sets your user name and
initials and the logical pathname translations for the SourceServer
database and the file hierarchy on your local disk. The logical host for
the SourceServer database is SSRemote. The host for the local files is
SSLocal. The file initialize-projects.lisp sets the list of
projects. The projects do not need to exist initially, but an error occurs
if you attempt to mount a project that is not in the database.

To try out SourceServer, edit the two files, then load or execute the file
load-sourceserver.lisp in the SourceServer folder.

The version of the SourceServer application in this folder is 1.0.1; it can
reside anywhere on your system.
684 Macintosh Common Lisp Reference

The SourceServer menu

The first four menu items on the SourceServer menu apply to the active
(front most) window. If the active window corresponds to a file in the
local directory of one of *all-projects* some or all of these menu
items are enabled.

Checkout Active is enabled if the corresponding project is mounted
and the file is read-only on the local disk. It checks out the file for
modification, preventing other users from modifying it.

Checkin Active is enabled if the project is mounted and the file is
modifiable on the local disk. It checks in the file and makes it read-only.

ModifyRead0nly Active is enabled if the file is read only. It makes the
file modifiable on the local disk.

Other Active is always enabled and provides a variety of other options.

Mount Projects allows you to mount all projects or just some selected
projects. Use shift click in the dialog to select multiple projects.

New Project creates a new project. A dialog asks for the name of the
database file for the project. If the corresponding local directory exists
in SSLocal:, that is used. If it does not exist, a dialog lets you create
the local directory.

Update Current Project gets the most recent versions of all the project
files from the SourceServer database. If any of the files are modifiable
on the local disk, a dialog asks if you want to move the local files to a
merge directory or to specify other action. It is recommended to choose
“merge.”

The modified files are moved to a directory like hd:my-project
merge0: and the newer ones replace them in the project directory. You
can use Merge Directories to merge your changes with the newer files.

Merge Directories is used to merge a selected file in one directory with
the correspondingly named file in another directory. In the dialog Main
dir: is generally the local project directory, for example.
SSlocal:project; and Merge dir: is the directory containing
those files that were moved to a merge directory, for example,
SSlocal:project Merge0;. Choosing the List Files button lists the
contents of the merge directory. Select a file from the list, then click
Mergge File. Both versions of the selected file open and dialog that
controls the merge is displayed. Note: Be sure you have a file selected
before you click Merge File.

Merge Directories can be used to merge any directories not just those
containing project files.
Appendix C: SourceServer 685

■ To add a single file to a project, make its window active and choose
Checkin Active. A dialog asks if you want to add it to the project.

■ To add several files to a project use New Project Files in the submenu
of Other File. This brings up a dialog that lists all the files in the chosen
directory. The filter at the top can be used to select a subset of the files.
The filter string is passed to the directory function so, for example,
*.lisp selects all the .lisp files. Use the Shift and Command keys to
select and deselect more than one file.

■ To delete a file from a project choose Delete in the submenu of Other
File. This just removes the file from the project database. It does not
delete it from your local disk.

Notes

If you attempt to modify a fred-window for a read-only file, a dialog
asks whether you want to make the buffer (and file) modifiable. This
happens even if SourceServer is not loaded as long as the SourceServer
folder is in the expected place in the MCL folder.

It may be the case that whereas this SourceServer interface supports
project hierarchies, MPW does not. So switching between MPW and
MCL SourceServer for source control of a hierarchical project may not
work.
686 Macintosh Common Lisp Reference

687

Appendix D:

QuickDraw Graphics

Contents

QuickDraw in Macintosh Common Lisp / 688
Windows, GrafPorts, and PortRects / 688
Points and rectangles / 689
Window state functions / 691
Pen and line-drawing routines / 693
Drawing text / 701
Calculations with rectangles / 701
Graphics operations on rectangles / 706
Graphics operations on ovals / 709
Graphics operations on rounded rectangles / 712
Graphics operations on arcs / 715
Regions / 718

Calculations with regions / 721
Graphics operations on regions / 724

Bitmaps / 726
Pictures / 728
Polygons / 730
Miscellaneous procedures / 733

This appendix documents a set of CLOS methods that create an interface with
QuickDraw. The code that implements these functions serves as an extended
example of CLOS programming and is included as an example file. You should
read it if you plan to use QuickDraw extensively in Macintosh Common Lisp,
or if you are planning to create your own high-level methods to interface with
traps. However, you may prefer to use the traps functionality documented in
Chapter 16: OS Entry Points and Records.

This appendix assumes some familiarity with the various discussions of
QuickDraw in Inside Macintosh. You should also be familiar with the MCL
implementation of points, as discussed in “Points” on page 70 and with the
MCL implementation of records, described in Chapter 16: OS Entry Points and
Records.

QuickDraw in Macintosh Common Lisp

Macintosh Common Lisp allows you to call QuickDraw traps directly
(see Chapter 16: OS Entry Points and Records). The interface routines
support all of the functionality found in the original (64K ROM)
Macintosh packages.

The arguments to the MCL QuickDraw functions generally parallel the
arguments to the Pascal QuickDraw functions given in Inside Macintosh.
In several places Pascal functionality has been extended by taking
advantage of the optional arguments provided by Macintosh Common
Lisp. In some places the order of arguments has been changed to make
the mapping of the optional arguments more effective. Last var
arguments have sometimes been eliminated, and instead a value is
returned.

Some QuickDraw functions may be performed only as methods on
views. The view must be a window or must be contained in a window.
The functions depend on the existence of a graphics port (GrafPort). All
other functions may be performed globally.

Before calling any of the functions described in this appendix, you must
load the QuickDraw file, which is in your MCL Library directory.

Windows, GrafPorts, and PortRects

All drawing on the Macintosh computer takes place inside GrafPorts,
the structures upon which a program builds windows. (See Inside
Macintosh for a complete description of GrafPorts.)

In low-level Macintosh drawing, several levels of initialization are used
to set up windows and GrafPorts for drawings. Once they have been
created, you must keep track of the current GrafPort when you do any
drawing.

This process is simplified for the graphics routines given in this
appendix.

■ When you create a window, an initialized GrafPort is automatically
created.

■ Drawing commands are defined as methods on views, which must be
windows or contained in windows; when you call a method to perform
one of the commands in a window, GrafPorts are set and restored
automatically with with-focused-view.
688 Macintosh Common Lisp Reference

■ Drawing inside windows is automatically cropped to fit inside the
window and the portions of the window that are visible (that is, not
covered by other windows).

Drawing is also affected by the clip region (described later) and the
PortRect. The PortRect is an arbitrary rectangle designating the
outermost bounds in which drawing can occur. (See Figure D-2.) It
supplies a frame of reference for the window. The default PortRect is
infinitely large; you can set it using low-level calls (although you
usually won’t need to worry about this at all).

Since all the drawing functions use with-focused-view, you can
speed up drawing considerably if you wrap with-focused-view
around all calls to multiple drawing functions.

Points and rectangles

In QuickDraw, points are specified by two coordinates, the horizontal
coordinate (called h) and the vertical coordinate (called v). The
horizontal coordinate increases as it moves to the right, and the vertical
coordinate increases as it moves down. The upper-left corner of a
window (called the origin) is usually the point (0,0), but the origin may
be changed by using the set-origin generic function.

Points are stored as encoded integers. Points lie at the intersection of
two grid lines on the QuickDraw plane. Note that points and pixels are
not equivalent. The point associated with a given pixel is at the upper-
left corner of the pixel. (See Figure D-1.)

See “Points” on page 70 for a general description of the MCL point data
format.

■ Figure D-1 Location of point at upper-left corner of pixel

Point Grid lines

Pixel
Appendix D: QuickDraw Graphics 689

A Macintosh computer stores rectangles as 8-byte records. (Records are
blocks of non-Lisp data stored on the Macintosh heap or on the stack;
see Chapter 16: OS Entry Points and Records for details.)

Rectangle records can be thought of as two points (upper-left and
lower-right), or four edges (left, top, right, and bottom). Allocating
memory for rectangle records can be inefficient, and so Macintosh
Common Lisp provides several forms of memory allocation. The
make-record function is used to allocate memory for long-lived
rectangles, and the rlet function is used to allocate records for short-
lived rectangles (see Chapter 16: OS Entry Points and Records for
details).

For many of the MCL QuickDraw functions that use rectangles, you do
not need to allocate rectangle records explicitly at all. The rectangles can
be specified as four coordinates, or as two points, or as a rectangle
record (see Figure D-2). In general, if you use a rectangle only once, it
is all right to pass it as two points or four coordinates. However, if you
use it several times, it is more efficient to create and pass an actual
rectangle record.

■ Figure D-2 A PortRect

When alternative forms of a point or a rectangle are accepted as
arguments, the flexible argument appears last. This order prevents
ambiguity about which argument is which and explains why the order
of arguments sometimes differs from the order given in Inside
Macintosh.

Top

Left

Bottom

Right
690 Macintosh Common Lisp Reference

Window state functions

The following functions operate on the window containing the view
asked to perform a function.

origin [Generic function]

Syntax origin (view view)

Description The origin generic function returns the coordinates of the upper-left
point in the window’s content region. This is usually #@(0 0) but may be
different if it is set by user-written code.

Argument view A window or a view contained in a window.

set-origin [Generic function]

Syntax set-origin (view view) h &optional v

Description The set-origin generic function sets the origin to the point specified by
h and v.

The contents of the window are not moved; only future drawing is affected.

Arguments view A window or a view contained in a window.
h Horizontal position.
v Vertical position. If the value of v is nil (the default), h is

assumed to represent a point.

Example

Figure D-3 shows an example of using set-origin. In that figure you
can see that rectangles can be passed as two points, four coordinates, or
one rectangle record.
Appendix D: QuickDraw Graphics 691

■ Figure D-3 Multiple methods of passing rectangles

A clip region allows drawing in a window to be restricted to an
arbitrary region. Drawing occurs only in the clip region. The default
clip region is arbitrarily large, so no clipping takes place. Note that
regions must be explicitly disposed of; they are not subject to automatic
garbage collection.

clip-region [Generic function]

Syntax clip-region (view view) &optional save-region

Description The clip-region generic function returns the window’s current clip
region.

Arguments view A window or a view contained in a window.
save-region The region in which the window’s clip region is returned;

otherwise, the clip region is returned in a newly allocated
region.

set-clip-region [Generic function]

Syntax set-clip-region (view view) new-region

Description The set-clip-region generic function sets the window’s clip region to
new-region and returns new-region.

Arguments view A window or a view contained in a window.
new-region A region.

#@(0 0)

#@ (100 50)

#@(50 25)

#@ (150 75)

(set-origin #@(50 25))

(fill-rect 50 25 75 50)
692 Macintosh Common Lisp Reference

See the “Regions” on page 718 for functions that allocate and
manipulate regions.

clip-rect [Generic function]

Syntax clip-rect (view view) left &optional top right bottom

Description The clip-rect generic function makes the window’s clip region a
rectangular region equivalent to the rectangle determined by arg. It
returns nil.

Arguments view A window or a view contained in a window.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

Pen and line-drawing routines

Every window has its own pen. The state of the pen determines how
drawing occurs in the window. For example, if the pen is hidden,
drawing commands have no effect on the screen. In addition to its state
as hidden or shown, a pen has a size (height and width), a position in
the window, and a pattern used for drawing. (See Figure D-4.)
Appendix D: QuickDraw Graphics 693

■ Figure D-4 Attributes of a graphics pen

The following functions operate on the window containing the view
asked to perform a function.

pen-show [Generic function]

Syntax pen-show (view view)

Description The pen-show generic function shows the pen. Drawing occurs only
when the pen is shown.

Argument view A window or a view contained in a window.

pen-hide [Generic function]

Syntax pen-hide (view view)

Description The pen-hide generic function hides the pen. If the pen is hidden, no
drawing occurs.

Argument view A window or a view contained in a window.

pen-shown-p [Generic function]

Syntax pen-shown-p (view view)

Position

Height

Width Pattern
694 Macintosh Common Lisp Reference

Description The pen-shown-p generic function returns t if the pen is shown and nil
if the pen is hidden.

Argument view A window or a view contained in a window.

pen-position [Generic function]

Syntax pen-position (view view)

Description The pen-position generic function returns a point corresponding to the
pen position in local coordinates.

Argument view A window or a view contained in a window.

pen-size [Generic function]

Syntax pen-size (view view)

Description The pen-size generic function returns the current pen size as a point
(expressing a width and height).

Argument view A window or a view contained in a window.

set-pen-size [Generic function]

Syntax set-pen-size (view view) h &optional v

Description The set-pen-size generic function sets the pen size to the point
indicated by h and v. Figure D-5 shows QuickDraw pen sizes.

Arguments view A window or a view contained in a window.
h The width of the new pen size (or a point representing the

width and height, if v is not given).
v The height of the new pen size.
Appendix D: QuickDraw Graphics 695

■ Figure D-5 QuickDraw pen sizes

pen-pattern [Generic function]

Syntax pen-pattern (view view) &optional save-pattern

Description The pen-pattern generic function returns the window’s pen pattern.

Arguments view A window or a view contained in a window.
save-pattern A pattern record; the pattern is returned in this record. If

save-pattern is not given, a new pattern record is allocated
to hold the returned pattern.

set-pen-pattern [Generic function]

Syntax set-pen-pattern (view view) new-pattern

Description The set-pen-pattern generic function sets the window’s pen pattern.

Arguments view A window or a view contained in a window.
new-pattern A pattern record.

A pattern is stored as a 64-bit block of memory (see Figure D-6). The
definition of a pattern record allows patterns to be accessed as 8 bytes
or four words.

Pattern records, like all records, continue to take up space on the
Macintosh heap until they are explicitly disposed of.

(defrecord pattern
 (variant ((b0 byte) (b1 byte) (b2 byte) (b3 byte)
 (b4 byte) (b5 byte) (b6 byte) (b7 byte))
 ((w0 integer) (w1 integer)
 (w2 integer) (w3 integer))))

#@(4 4) #@(4 3) #@(3 4) #@(3 3)#@(1 1)

Indicates pen location
696 Macintosh Common Lisp Reference

■ Figure D-6 Pen pattern stored as a 64-bit block of memory

Macintosh Common Lisp stores five patterns as constants: *white-
pattern*, *black-pattern*, *gray-pattern*, *light-gray-
pattern*, and *dark-gray-pattern*.

Pen modes affect the way drawing occurs in the window. They provide
a logical mapping between the current state of pixels in the window
and the state of the pixels being drawn.

pen-mode [Generic function]

Syntax pen-mode (view view)

Description The pen-mode generic function returns a keyword indicating the
window’s current pen mode.

Argument view A window or a view contained in a window.

set-pen-mode [Generic function]

Syntax set-pen-mode (view view) new-mode

Description The set-pen-mode generic function sets the window’s current pen
mode. (See Figure D-7.)

Arguments view A window or a view contained in a window.
new-mode The new pen mode. This value should be one of the

following keywords: :patCopy, :patOr, :patXor,
:patBic, :notPatCopy, :notPatOr, :notPatXor,
:notPatBic.

128 64 32 16 8 4 2 1

128 + 64 + 32 + 8 + 4 + 2 = 238 --> b

128 + 64 + 16 + 8 + 4 + 1 = 221 --> b

128 + 32 + 16 + 8 + 2 + 1 = 187 --> b

64 + 32 + 16 + 4 + 2 + 1 = 119 --> b

128 + 64 + 32 + 8 + 4 + 2 = 238 --> b

128 + 64 + 16 + 8 + 4 + 1 = 221 --> b

128 + 32 + 16 + 8 + 2 + 1 = 187 --> b

64 + 32 + 16 + 4 + 2 + 1 = 119 --> b
Appendix D: QuickDraw Graphics 697

■ Figure D-7 Effect of pen modes on pixels being drawn

Pen-state records represent the pen mode as an integer. This integer is
equal to the position of the corresponding pen-mode keyword in the list
pen-modes. To translate an integer into a keyword, make the call
(elt *pen-state* mode-integer). To translate a keyword into an
integer, make the call (position mode-keyword *pen-state*).

Here is the definition of a pen-state record.
(defrecord PenState
(pnLoc point)
(pnSize point)
(pnMode integer)
(pnPat pattern))

pen-state [Generic function]

Syntax pen-mode (view view) &optional save-pen-state

:patCopy

:patOr

:patXor

:patBic

:notPatCopy

:notPatOr

:notPatXor

:notPatBic

Source Destination Transform mode Result
698 Macintosh Common Lisp Reference

Description The pen-state generic function returns the current pen state, a record
containing the pen’s location, size, mode (as an integer), and pattern.

Pen-state records, like all records, continue to take up space on the
Macintosh heap until they are explicitly disposed of.

Arguments view A window or a view contained in a window.
save-pen-state A pointer to a pen-state record; the returned state is

stored in this record. If save-pen-state is not given, the pen
state is returned in a newly allocated record.

set-pen-state [Generic function]

Syntax set-pen-mode (view view) new-pen-state

Description The set-pen-state generic function sets the window’s pen state.

Arguments view A window or a view contained in a window.
new-pen-state A pen-state record.

pen-normal [Generic function]

Syntax pen-normal (view view)

Description The pen-normal generic function sets the pen size to #@(1 1), the pen
mode to :patCopy, and the pen pattern to *black-pattern*. The pen
location is not changed.

Argument view A window or a view contained in a window.

move-to [Generic function]

Syntax move-to (view view) h &optional v

Description The move-to generic function moves the pen to the point specified by h
and v without doing any drawing. It returns the point to which the pen
moved.

Arguments view A window or a view contained in a window.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

represent a point.
Appendix D: QuickDraw Graphics 699

move [Generic function]

Syntax move (view view) h &optional v

Description The move generic function moves the pen h points to the right and v points
down without doing any drawing.

Arguments view A window or a view contained in a window.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

represent a point.

line-to [Generic function]

Syntax line-to (view view) h &optional v

Description The line-to generic function draws a line from the pen’s current
position to the point represented by h and v.

Arguments view A window or a view contained in a window.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

represent a point.

line [Generic function]

Syntax line (view view) h &optional v

Description The line generic function draws a line to a point h points to the right and
v points down from the current pen position.

Arguments view A window or a view contained in a window.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

represent a point.
700 Macintosh Common Lisp Reference

Drawing text

Macintosh Common Lisp draws text in windows by using a window as
an output stream. Drawing of text takes place starting at the current pen
position using the window’s current font, size, style, and mode. The
initial pen position determines the placement of the lower-left corner of
the first character drawn, and the pen is moved to the right the width of
each character after it is drawn. Special characters, such as carriage
returns and backspaces, have no effect.

When a window is created, its pen position is #@(0 0). This means
that any text drawn in it will be above the visible portion of the window
until the pen position is lowered.

stream-tyo [Generic function]

Syntax stream-tyo (view view) char

Description The stream-tyo generic function draws char at the current pen position,
in the current font, using the current text transfer mode. It then moves the
pen to the right the width of the character. Because windows are streams,
all stream output functions (such as prin1) can be performed on them.
The stream-tyo function is not normally called directly but instead by
stream output functions.

Arguments view A window or a view contained in a window.
char A character.

Calculations with rectangles

The following functions do not draw; they simply perform calculations.
They do not depend on a GrafPort, and so they are defined globally
rather than as generic functions.

offset-rect [Function]

Syntax offset-rect rectangle h &optional v
Appendix D: QuickDraw Graphics 701

Description The offset-rect function moves rectangle h to the right and v down.
(See Figure D-8.) It returns the destructively modified rectangle.

Arguments rectangle A rectangle.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

represent a point.

■ Figure D-8 Offset rectangle, with h equal to 4 and v equal to 2

inset-rect [Function]

Syntax inset-rect rectangle h &optional v

Description The inset-rect function shrinks or expands rectangle by h and v. It
returns the destructively modified rectangle. If h and v are positive, the left
and right sides and the top and bottom move toward the center. If h and v
are negative, the sides move outward. See Figure D-9.

Arguments rectangle A rectangle.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

represent a point.

2

4

(offset-rect rect 4 2)
702 Macintosh Common Lisp Reference

■ Figure D-9 Inset rectangle, with h equal to 4 and v equal to 2

intersect-rect [Function]

Syntax intersect-rect rect1 rect2 dest-rect

Description The intersect-rect function stores in dest-rect the rectangle created by
the intersection of rect1 and rect2 and returns dest-rect. (See Figure D-10.)

A single rectangle may be passed as dest-rect and as rect1 or rect2, making it
unnecessary to allocate one extra rectangle.

Arguments rect1 A rectangle.
rect2 A rectangle.
dest-rect A rectangle record used to hold the intersection of rect1

and rect2.

■ Figure D-10 Rectangle resulting from the intersection of two others

2

4

(inset-rect rect 4 2)

2

4

Resulting rectangle
Appendix D: QuickDraw Graphics 703

union-rect [Function]

Syntax union-rect rect1 rect2 dest-rect

Description The union-rect function stores in dest-rect the smallest rectangle that
encloses both rect1 and rect2 and returns dest-rect. (See Figure D-11.)

A single rectangle may be passed as dest-rect and as rect1 or rect2, making it
unnecessary to allocate one extra rectangle.

Arguments rect1 A rectangle.
rect2 A rectangle.
dest-rect A rectangle record used to hold the rectangle enclosing

rect1 and rect2.

■ Figure D-11 Smallest rectangle completely enclosing two others

point-in-rect-p [Function]

Syntax point-in-rect-p rectangle h &optional v

Description The point-in-rect-p function returns t if the point specified by h and
v is inside rectangle; otherwise, it returns nil.

Arguments rectangle A rectangle.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

represent a point.

points-to-rect [Function]

Syntax points-to-rect point1 point2 dest-rect

Resulting rectangle
704 Macintosh Common Lisp Reference

 45
Description The points-to-rect function stores in dest-rect the smallest rectangle
that encloses both point1 and point2, and returns dest-rect.

The points-to-rect function is useful when you have two corner points
but don’t know which one is the top left and which one is the bottom right.

Arguments point1 A point that specifies one of the corners of the rectangle.
point2 A point that represents the other corner of the rectangle.
dest-rect A rectangle record used to hold the result of the

calculations.

point-to-angle [Function]

Syntax point-to-angle rectangle h &optional v

Description The point-to-angle function returns an angle number calculated from
rectangle and the point specified by h and v (for details, see Inside
Macintosh). (See Figure D-12.)

Arguments rectangle A rectangle.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

represent a point.

■ Figure D-12 Point to angle, calculated from two rectangles

angle = 23

angle = 45 angle = 23

angle =
Appendix D: QuickDraw Graphics 705

equal-rect [Function]

Syntax equal-rect rect1 rect2

Description The equal-rect function returns t if rect1 and rect2 are equal and nil
otherwise.

Arguments rect1 A rectangle.
rect2 A rectangle.

empty-rect-p [Function]

Syntax empty-rect-p left &optional top right bottom

Description The empty-rect-p function returns t if the rectangle specified by arg is
empty (contains no points) and nil otherwise.

A rectangle is empty if its bottom coordinate is less than or equal to the top or
if the right coordinate is less than or equal to the left.

Arguments left, top, right, bottom
These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

Graphics operations on rectangles

Five generic functions govern graphics operations on rectangles.

frame-rect [Generic function]

Syntax frame-rect (view view) left &optional top right bottom

Description The frame-rect generic function draws a line just inside the boundaries
of the rectangle specified by arg, using the current pen. (See Figure D-13.)
706 Macintosh Common Lisp Reference

�������

Arguments view A window or a view contained in a window.

left, top, right, bottom
These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

■ Figure D-13 Rectangle framed in the current pen

paint-rect [Generic function]

Syntax paint-rect (view view) left &optional top right bottom

Description The paint-rect generic function fills the rectangle specified by arg with
the current pen pattern and mode.

Arguments view A window or a view contained in a window.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

erase-rect [Generic function]

Syntax erase-rect (view view) left &optional top right bottom

����
Appendix D: QuickDraw Graphics 707

Description The erase-rect generic function fills the rectangle specified by arg with
the current background pattern (in patCopy mode).

Arguments view A window or a view contained in a window.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

invert-rect [Generic function]

Syntax invert-rect (view view) left &optional top right bottom

Description The invert-rect generic function inverts the pixels inside the rectangle
specified by arg. (See Figure D-14.)

Arguments view A window or a view contained in a window.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

■ Figure D-14 Effects of paint-rect and invert-rect
708 Macintosh Common Lisp Reference

fill-rect [Generic function]

Syntax fill-rect (view view) pattern left &optional top right bottom

Description The fill-rect generic function fills the rectangle specified by arg with
pattern (in :patCopy mode).

Arguments view A window or a view contained in a window.
pattern A pattern record; see pen-pattern on page 696 for a

discussion of pattern records.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

Graphics operations on ovals

Ovals are drawn just inside rectangles. The oval is determined by the
specified rectangle. (See Figure D-15.)

■ Figure D-15 An oval within a rectangle
Appendix D: QuickDraw Graphics 709

frame-oval [Generic function]

Syntax frame-oval (view view) left &optional top right bottom

Description The frame-oval generic function draws a line just inside the boundaries
of the oval specified by the rectangle, using the current pen pattern, mode,
and size. The rectangle is specified
by arg.

Arguments view A window or a view contained in a window.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

paint-oval [Generic function]

Syntax paint-oval (view view) left &optional top right bottom

Description The paint-oval generic function fills the oval specified by the rectangle
specified by the arguments with the current pen pattern and mode.

Arguments view A window or a view contained in a window.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

erase-oval [Generic function]

Syntax erase-oval (view view) left &optional top right bottom

Description The erase-oval generic function fills the oval specified by the rectangle
with the current background pattern (in :patCopy mode). The rectangle
is specified by the arguments.
710 Macintosh Common Lisp Reference

Arguments view A window or a view contained in a window.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

invert-oval [Generic function]

Syntax invert-oval (view view) left &optional top right bottom

Description The invert-oval generic function inverts the pixels enclosed by the oval
specified by the rectangle. The rectangle is specified by the arguments.

Arguments view A window or a view contained in a window.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

fill-oval [Generic function]

Syntax fill-oval (view view) pattern left &optional top right bottom

Description The fill-oval generic function fills the oval specified by the rectangle
with pattern (in :patCopy mode). The rectangle is specified by the
arguments.

Arguments view A window or a view contained in a window.
pattern A pattern record; see pen-pattern on page 696 for a

discussion of pattern records.
Appendix D: QuickDraw Graphics 711

left, top, right, bottom
These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

Graphics operations on rounded rectangles

A rounded rectangle (see Figure D-16) is a rectangle whose corners are
rounded. The shapes of the corners are determined by ovals associated
with the rounded rectangles. Thus, a rounded rectangle is determined
by (1) the rectangle, (2) the width of the oval, and (3) the height of the
oval.

■ Figure D-16 Rounded rectangle

frame-round-rect [Generic function]

Syntax frame-round-rect (view view) oval-width oval-height left &optional
top right bottom

Oval width Oval height
712 Macintosh Common Lisp Reference

Description The frame-round-rect generic function draws a line just inside the
boundaries of the rounded rectangle, using the current pen pattern, mode,
and size. The rounded rectangle is specified by the rectangle, oval-width,
and oval-height.

Arguments view A window or a view contained in a window.
oval-width The width of the oval used to shape the rounded corner.
oval-height The height of the oval used to shape the rounded corner.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

paint-round-rect [Generic function]

Syntax paint-round-rect (view view) oval-width oval-height left &optional
top right bottom

Description The paint-round-rect generic function fills the rounded rectangle
with the current pen pattern and mode. The rounded rectangle is specified
by the rectangle, oval-width, and oval-height.

Arguments view A window or a view contained in a window.
oval-width The width of the oval used to shape the rounded corner.
oval-height The height of the oval used to shape the rounded corner.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

erase-round-rect [Generic function]

Syntax erase-round-rect (view view) oval-width oval-height left &optional
top right bottom
Appendix D: QuickDraw Graphics 713

Description The erase-round-rect generic function fills the rounded rectangle t
with the current background pattern using :patCopy mode. The
rounded rectangle is specified by the rectangle, oval-width, and oval-height.

Arguments view A window or a view contained in a window.
oval-width The width of the oval used to shape the rounded corner.
oval-height The height of the oval used to shape the rounded corner.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

invert-round-rect [Generic function]

Syntax invert-round-rect (view view) oval-width oval-height left &optional
top right bottom

Description The invert-round-rect generic function inverts the pixels enclosed by
the rounded rectangle. The rounded rectangle is specified by the rectangle,
oval-width, and oval-height.

Arguments view A window or a view contained in a window.
oval-width The width of the oval used to shape the rounded corner.
oval-height The height of the oval used to shape the rounded corner.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

fill-round-rect [Generic function]

Syntax fill-round-rect (view view) pattern oval-width oval-height left
&optional top right bottom

Description The fill-round-rect generic function fills the specified rounded
rectangle with the given pattern (in :patCopy mode). The rounded
rectangle is specified by the rectangle, oval-width, and oval-height.
714 Macintosh Common Lisp Reference

Arguments view A window or a view contained in a window.
pattern A pattern record; see pen-pattern on page 696 for a

discussion of pattern records.
oval-width The width of the oval used to shape the rounded rectangle

corner.
oval-height The height of the oval used to shape the rounded

rectangle corner.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

Graphics operations on arcs

These functions perform graphics operations on arcs and wedge-shaped sections of ovals.

frame-arc [Generic function]

Syntax frame-arc (view view) start-angle arc-angle left &optional top right
bottom

Description The frame-arc generic function draws a line just inside the arc specified
by the rectangle, start-angle, and arc-angle using the current pen pattern,
mode, and size. The rectangle is specified by the arguments. Figure D-17
shows an arc with a start angle of 45 and an arc angle of 135 inside a
rectangle with the coordinates #@(0 0) and #@(150 100).

Arguments view A window or a view contained in a window.
start-angle The angle at which the arc originates, represented as an

integer. An angle of 0 points straight up. (See the
documentation of the FrameArc procedure in Inside
Macintosh.)

arc-angle The angle subtended by the arc.
Appendix D: QuickDraw Graphics 715

left, top, right, bottom
These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

■ Figure D-17 Framing an arc

paint-arc [Generic function]

Syntax paint-arc (view view) start-angle arc-angle left &optional top right
bottom

Description The paint-arc generic function fills the arc specified by the rectangle,
start-angle, and arc-angle with the current pen pattern and mode. The
rectangle is specified by the arguments.

Arguments view A window or a view contained in a window.
start-angle The angle at which the arc originates, represented as an

integer. An angle of 0 points straight up.
arc-angle The angle subtended by the arc.

#@(0 0)

45°

#@(150 100)

180°

(frame-arc 45 135
 0 0 150 100)
716 Macintosh Common Lisp Reference

left, top, right, bottom
These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

erase-arc [Generic function]

Syntax erase-arc (view view) start-angle arc-angle left &optional top right
bottom

Description The erase-arc generic function fills the specified arc with the current
background pattern. The arc is specified by the rectangle, start-angle, and
arc-angle. The rectangle is specified by left, top, right, bottom.

Arguments view A window or a view contained in a window.
start-angle The angle at which the arc originates, represented as an

integer. An angle of 0 points straight up.
arc-angle The angle subtended by the arc.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

invert-arc [Generic function]

Syntax invert-arc (view view) start-angle arc-angle left &optional top right
bottom

Description The invert-arc generic function inverts the pixels enclosed by the arc
specified by the rectangle, start-angle, and arc-angle. The rectangle is
specified by left, top, right, bottom.

Arguments view A window or a view contained in a window.
start-angle The angle at which the arc originates, represented as an

integer. An angle of 0 points straight up.
arc-angle The angle subtended by the arc.
Appendix D: QuickDraw Graphics 717

left, top, right, bottom
These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

fill-arc [Generic function]

Syntax fill-arc (view view) pattern start-angle arc-angle left &optional top
right bottom

Description The fill-arc generic function draws a line just inside the arc specified
by the rectangle, start-angle, and arc-angle using the current pen pattern,
mode, and size. The rectangle is specified by left, top, right, bottom.

Arguments view A window or a view contained in a window.
pattern A pattern record; see pen-pattern on page 696 for a

discussion of pattern records.
start-angle The angle at which the arc originates, represented as an

integer. An angle of 0 points straight up.
arc-angle The angle subtended by the arc.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

Regions

A region divides the graphics plane of points into two sets of points:
those inside the region and those outside the region. Regions can have
any arbitrary shape. (See Figure D-18.)
718 Macintosh Common Lisp Reference

The storage for regions is not subject to automatic garbage collection.
You must reclaim region storage by calling the function dispose-
region. With this limitation, the use of regions has been greatly
simplified from the specification given in Inside Macintosh. Specifically,
much of the initialization of regions is performed automatically.

■ Figure D-18 Regions

new-region [Function]

Syntax new-region

Description The new-region function allocates a new empty region and returns it.

dispose-region [Function]

Syntax dispose-region region

Description The dispose-region function reclaims storage space used by region and
returns nil.

Argument region A region.

copy-region [Function]

Syntax copy-region region &optional dest-region
Appendix D: QuickDraw Graphics 719

Description The copy-region function either copies region into dest-region, if it is
supplied, or creates a new region equivalent to region. It returns the new
region or dest-region.

Note that if a new region is created, you must dispose of it explicitly to reclaim
its storage space.

Arguments region A region.
dest-region Another region.

set-empty-region [Function]

Syntax set-empty-region region

Description The set-empty-region function destructively modifies region so that it
is empty and returns the empty region.

Argument region A region.

set-rect-region [Function]

Syntax set-rect-region region left &optional top right bottom

Description The set-rect-region function sets region so that it is equivalent to the
rectangle specified by the arguments and returns the rectangular region.

Arguments region A region.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

open-region [Generic function]

Syntax open-region (view view)

Description The open-region generic function hides the pen and begins recording a
region. Subsequent drawing commands to the window add to the region.
Recording ends when close-region is called. The function returns nil.
720 Macintosh Common Lisp Reference

It is an error to call open-region a second time without first calling close-
region.

Argument view A window or a view contained in a window.

close-region [Generic function]

Syntax close-region (view view) &optional dest-region

Description The close-region generic function shows the pen and returns a region
that is the accumulation of drawing commands in the window since the
last open-region for the window. It returns the result in dest-region, if
supplied, or else in a newly created region.

It is an error to call close-region before open–region has been called.

Note that if a new region is created, you must dispose of it explicitly to reclaim
its storage space.

Arguments view A window or a view contained in a window.
dest-region A region.

Calculations with regions

The following functions do not draw; they simply perform calculations.
They do not depend on a GrafPort, and so they are defined globally
rather than as generic functions.

offset-region [Function]

Syntax offset-region region h &optional v

Description The offset-region function destructively offsets region by h to the right
and v down and returns the offset region. If only h is given, it is interpreted
as an encoded point, and its coordinates are used.

Arguments region A region.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

specify both values.
Appendix D: QuickDraw Graphics 721

inset-region [Function]

Syntax inset-region region h &optional v

Description The inset-region function destructively shrinks or expands region by h
horizontally and v vertically and returns it. If only h is given, it is
interpreted as an encoded point, and its coordinates are used.

Arguments region A region.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

specify both values.

intersect-region [Function]

Syntax intersect-region region1 region2 &optional dest-region

Description The intersect-region function returns a region that is the intersection
of region1 and region2. It returns the result in dest-region, if supplied, or else
in a newly created region.

Note that if a new region is created, you must dispose of it explicitly to reclaim
its storage space.

Arguments region1 A region.
region2 A region.
dest-region A region.

union-region [Function]

Syntax union-region region1 region2 &optional dest-region

Description The union-region function returns a region that is the union of region1
and region2. It returns the result in dest-region, if supplied, or else in a
newly created region.

Note that if a new region is created, you must dispose of it explicitly to reclaim
its storage space.

Arguments region1 A region.
region2 A region.
dest-region A region.
722 Macintosh Common Lisp Reference

difference-region [Function]

Syntax difference-region region1 region2 &optional dest-region

Description The difference-region function returns a region that is the difference
of region1 and region2. It returns the result in dest-region, if supplied, or else
in a newly created region.

Note that if a new region is created, you must dispose of it explicitly to reclaim
its storage space.

Arguments region1 A region.
region2 A region.
dest-region A region.

xor-region [Function]

Syntax xor-region region1 region2 &optional dest-region

Description The xor-region function returns a region that consists of all the points
that are in region1 or region2, but not both. It returns the result in dest-
region, if supplied, or else in a newly created region.

Note that if a new region is created, you must dispose of it explicitly to reclaim
its storage space.

Arguments region1 A region.
region2 A region.
dest-region A region.

point-in-region-p [Function]

Syntax point-in-region-p region h &optional v

Description The point-in-region-p function returns t if the point specified by h
and v is contained in region; otherwise, it returns nil. If only h is given, it
is interpreted as an encoded point.

Arguments region A region.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

specify both values.
Appendix D: QuickDraw Graphics 723

rect-in-region-p [Function]

Syntax rect-in-region-p region left &optional top right bottom

Description The rect-in-region-p function returns t if the intersection of the
rectangle specified by the arguments and region contains at least one point;
otherwise it returns nil.

Arguments region A region.
left, top, right, bottom

These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

equal-region-p [Function]

Syntax equal-region-p region1 region2

Description The equal-region-p function returns t if region 1 and region 2 are
identical in size, shape, and position; otherwise it returns nil.

Arguments region1 A region.
region2 A region.

empty-region-p [Function]

Syntax empty-region-p region

Description The empty-region-p function returns t if region contains no points and
nil otherwise.

Argument region A region.

Graphics operations on regions

These functions allow graphics operations on regions.
724 Macintosh Common Lisp Reference

frame-region [Generic function]

Syntax frame-region (view view) region

Description The frame-region generic function draws a line just inside the
boundaries of region, using the current pen.

Arguments view A window or a view contained in a window.
region A region.

paint-region [Generic function]

Syntax paint-region (view view) region

Description The paint-region generic function fills region with the current pen
pattern and mode.

Arguments view A window or a view contained in a window.
region A region.

erase-region [Generic function]

Syntax erase-region (view view) region

Description The erase-region generic function fills region with the current
background pattern, using :patCopy mode.

Arguments view A window or a view contained in a window.
region A region.

invert-region [Generic function]

Syntax invert-region (view view) region

Description The invert-region generic function inverts the pixels enclosed by
region.

Arguments view A window or a view contained in a window.
region A region.
Appendix D: QuickDraw Graphics 725

fill-region [Generic function]

Syntax fill-region (view view) pattern region

Description The fill-region generic function fills region with pattern, using
:patCopy mode.

Arguments view A window or a view contained in a window.
pattern A pattern record; see pen-pattern on page 696 for a

discussion of pattern records.
region A region.

Bitmaps

Bitmaps are rectangular arrays of pixels that are either black or white.
The following functions are useful in manipulating bitmaps.

make-bitmap [Function]

Syntax make-bitmap left &optional top right bottom

Description The make-bitmap function returns a new bitmap the size of the rectangle
specified by the arguments. This bitmap is not displayed anywhere but
can be used for calculations and storage.

Arguments left, top, right, bottom
These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

copy-bits [Function]

Syntax copy-bits bitmap1 bitmap2 rect1 rect2 &optional pen-mode region
726 Macintosh Common Lisp Reference

Description The copy-bits function copies and scales the bits inside rect1 of bitmap1
to the bits inside rect2 of bitmap2 using the transfer mode pen-mode.

If region is given, copy-bits clips the transferred bitmap to region and pen–
mode assumes the default value :srcCopy.

Arguments bitmap1 A bitmap.
bitmap2 A bitmap.
rect1 A rectangle.
rect2 A rectangle.
pen-mode A pen mode. Should be one of the following keywords:

:patCopy, :patOr, :patXor, :patBic,
:notPatCopy, :notPatOr, :notPatXor,
:notPatBic.

region A region.

scroll-rect [Generic function]

Syntax scroll-rect (view view) rectangle h &optional v

Description The scroll-rect generic function shifts the bits h pixels to the right and
v pixels down within rectangle, erases the uncovered region, and adds the
uncovered region to the window’s update region. See Figure D-19 for an
example of a scrolled rectangle.

Arguments view A window or a view contained in a window.
rectangle A rectangle.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

specify both values.
Appendix D: QuickDraw Graphics 727

■ Figure D-19 A rectangle scrolled down and to the right

Pictures

A picture is a recording of a sequence of QuickDraw commands.
Pictures may be played back at a later time, into any window. The MCL
picture commands are slightly different from the QuickDraw ones,
because Macintosh Common Lisp takes care of some of the memory
management automatically. There are also some additional capabilities
for manipulating pictures not found in QuickDraw.

start-picture [Generic function]

Syntax start-picture (view view) left &optional top right bottom

Description The start-picture generic function hides the pen and starts recording
QuickDraw commands in a picture whose frame is the rectangle specified
by the arguments, if supplied. Otherwise, the window’s PortRect is the
frame. The function returns nil.

It is an error to call start-picture a second time before calling get-
picture.

You must dispose of pictures explicitly by calling kill-picture to reclaim
their storage space

Arguments view A window or a view contained in a window.

#@(0 0)

+

Pen position

#@(0 0)

+

#@(250 250) #@(250 250)

(scroll-rect 100 100 250 250 100 50)
728 Macintosh Common Lisp Reference

left, top, right, bottom
These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

get-picture [Generic function]

Syntax get-picture (view view)

Description The get-picture generic function shows the pen and returns a new
picture representing the cumulative effect of all the QuickDraw
commands given since the last call to start–picture.

It is an error to call get-picture before start-picture has been called in
a window.

You must dispose of pictures explicitly by calling kill-picture to reclaim
their storage space

Argument view A window or a view contained in a window.

draw-picture [Generic function]

Syntax draw-picture (view view) picture &optional left top right bottom

Description The draw-picture generic function draws picture in the window and
returns picture.

Note that if the PortRect was used as a frame when the picture was made, and
if the PortRect was arbitrarily large (the default set up by Macintosh Common
Lisp), then scaling will produce no drawing (since the drawing frame is so
much smaller than the creation frame).

Arguments view A window or a view contained in a window.
picture A picture.
Appendix D: QuickDraw Graphics 729

left, top, right, bottom
These four arguments are used together to specify the
rectangle. If only left is given, it should be a pointer to a
rectangle record. If only two arguments are given, they
should be points specifying the upper-left and lower-
right coordinates of the rectangle. If all four arguments
are given, they should be coordinates representing the
left, top, right, and bottom of the rectangle.

kill-picture [Function]

Syntax kill-picture picture

Description The kill-picture function reclaims the storage space used by picture
and returns nil.

Argument picture A picture.

Polygons

The MCL polygon commands are different from QuickDraw ones
because Macintosh Common Lisp handles some of the memory
management automatically.

start-polygon [Generic function]

Syntax start-polygon (view view)

Description The start-polygon generic function hides the pen and starts making a
polygon. Subsequent line and line-to commands are added to a new
polygon.

Within a single window, it is an error to call start-polygon twice before
calling get-polygon.

You must dispose of polygons explicitly, using kill-polygon to reclaim
their storage space.

Argument view A window or a view contained in a window.
730 Macintosh Common Lisp Reference

get-polygon [Generic function]

Syntax get-polygon (view view)

Description The get-polygon generic function shows the pen and returns a polygon
representing the cumulative effect of all the line and line-to
commands since the last call to start–polygon.

Within a single window, it is an error to call get-polygon before a start-
polygon has been called.

You must dispose of polygons explicitly, using kill-polygon to reclaim
their storage space.

Argument view A window or a view contained in a window.

kill-polygon [Function]

Syntax kill-polygon polygon

Description The kill-polygon function reclaims storage space used by polygon and
returns nil.

Argument polygon A polygon.

offset-polygon [Function]

Syntax offset-polygon polygon h &optional v

Description The offset-polygon function offsets polygon by h to the right and v
down. This function can be performed outside of windows because it does
not involve drawing. If only h is given,
it is interpreted as an encoded point.

Arguments polygon A polygon.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

specify both values.

frame-polygon [Generic function]

Syntax frame-polygon (view view) polygon
Appendix D: QuickDraw Graphics 731

��������

Description The frame-polygon generic function draws a line just inside the

boundaries of polygon using the current pen. A framed polygon is shown
in Figure D-20.

Arguments view A window or a view contained in a window.
polygon A polygon.

■ Figure D-20 A framed polygon

paint-polygon [Generic function]

Syntax paint-polygon (view view) polygon

Description The paint-polygon generic function fills polygon with the current pen
pattern and mode.

Arguments view A window or a view contained in a window.
polygon A polygon.

erase-polygon [Generic function]

Syntax erase-polygon (view view) polygon

Description The erase-polygon generic function fills polygon with the current
background pattern, using :patCopy mode.

Arguments view A window or a view contained in a window.
polygon A polygon.

��
�
�
�
�

�

732 Macintosh Common Lisp Reference

invert-polygon [Generic function]

Syntax invert-polygon (view view) polygon

Description The invert-polygon generic function inverts the pixels enclosed by
polygon.

Arguments view A window or a view contained in a window.
polygon A polygon.

fill-polygon [Generic function]

Syntax fill-polygon (view view) pattern polygon

Description The fill-polygon generic function fills polygon with pattern using
:patCopy mode.

Arguments view A window or a view contained in a window.
pattern A pattern record; see pen-pattern on page 696 for a

discussion of pattern records.
polygon A polygon.

Miscellaneous procedures

This section contains functions to perform miscellaneous graphics
procedures.

local-to-global [Generic function]

Syntax local-to-global (view view) h &optional v

Description The local-to-global generic function returns a global point that
corresponds to the window’s local point specified by h and v. If only h is
given, it is taken to be an encoded point.

Arguments view A window or a view contained in a window.
h Horizontal position.
Appendix D: QuickDraw Graphics 733

v Vertical position. If v is nil (the default), h is assumed to
specify both values.

global-to-local [Generic function]

Syntax global-to-local (view view) h &optional v

Description The global-to-local generic function returns a point in the window’s
coordinate system that corresponds to the global point specified by h and
v. If only h is given, it is interpreted as an encoded point.

Arguments view A window or a view contained in a window.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

specify both values.

get-pixel [Generic function]

Syntax get-pixel (view view) h &optional v

Description The get-pixel generic function returns t if the pixel specified by h and
v is black and within the window’s VisRgn; otherwise, it returns nil. If
only h is given, it is interpreted as an encoded point.

Arguments view A window or a view contained in a window.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

specify both values.

scale-point [Function]

Syntax scale-point rect1 rect2 h &optional v

Description The scale-point function returns a point whose horizontal and vertical
values are the scaled horizontal and vertical values of the point specified
by h and v. If only h is given, it is interpreted as an encoded point. The
scaling corresponds to the ratios of the width and height of rect1 to the
width and height of rect2.

Arguments rect1 A rectangle.
rect2 A rectangle.
h Horizontal position.
734 Macintosh Common Lisp Reference

v Vertical position. If v is nil (the default), h is assumed to
specify both values.

map-point [Function]

Syntax map-point source-rect dest-rect h &optional v

Description The map-point function returns a point that corresponds to dest-rect as
the point specified by h and v corresponds to source-rect. If only h is given,
it is interpreted as an encoded point.

The effect of map-point is shown in Figure D-21, where the
point (30, 5) corresponds to source-rect as the point (65,25) does
to dest-rect. The point #@(30 5) is half the width of source-rect
to the right of source-rect and is located at the vertical midpoint of source-
rect. The point #@(65 25) bears the same relation to dest-rect.

Arguments source-rect A rectangle.
dest-rect A rectangle.
h Horizontal position.
v Vertical position. If v is nil (the default), h is assumed to

specify both values.

■ Figure D-21 Effect of map-point

map-rect [Function]

Syntax map-rect source-rect dest-rect mapped-rect

source-rect
(0 0 20 10)

point (input)
#@(30 5)

dest-rect
(50 10 60 40)

point (result)
#@(65 25)
Appendix D: QuickDraw Graphics 735

Description The map-rect function returns a rectangle that corresponds to
dest-rect as mapped-rect corresponds to source-rect. The function
destructively modifies mapped-rect to hold the returned value.
The effect of map-rect is shown in Figure D-22, where the returned
rectangle corresponds to dest-rect as mapped-rect (input) corresponds to
source-rect.

This function is performed by applying map-point to the corner points of
mapped-rect.

Arguments source-rect A rectangle.
dest-rect A rectangle.
mapped-rect A rectangle.

■ Figure D-22 Effect of map-rect

map-region [Function]

Syntax map-region source-rect dest-rect region

Description The map-region function returns a region that corresponds to dest-rect as
region corresponds to source-rect. The function destructively modifies
region to hold the return value.

This function is effectively performed by applying map-point to all the points
in the region.

Arguments source-rect A rectangle.
dest-rect A rectangle.
region A region.

source-rect
(0 0 20 10)

mapped-rect
(input)
(30 5 40 10)

dest-rect
(50 10 60 40)

mapped-rect
(result)
(65 25 70 40)
736 Macintosh Common Lisp Reference

map-polygon [Function]

Syntax map-polygon source-rect dest-rect polygon

Description The map-polygon function returns a polygon that corresponds to dest-
rect as polygon corresponds to source-rect. The function destructively
modifies polygon to hold the returned value.

This function is effectively performed by applying map-point to all the points
that define the polygon.

Arguments source-rect A rectangle.
dest-rect A rectangle.
polygon A polygon.
Appendix D: QuickDraw Graphics 737

738 Macintosh Common Lisp Reference

739

Appendix E:

MCL 4.0 CD Contents

Contents

What is on the MCL 4.0 CD-ROM / 740
Highlights / 740
MCL 4.0 / 740
MCL 3.1 / 740
MCL 4.0 “Demo Version” / 740
MCL 4.0/3.1 Documentation / 741
MCL Floppy Disks / 741
Additional MCL Source Code / 741
Goodies from Digitool / 741
Goodies from MCL Friends / 742
User Contributed Code / 742
Developer Essentials / 742
Mail Archives & Other Docs / 742
Contents/Index / 742
On Location Indexes / 743

What is in the MCL 4.0 folder / 743
MCL 4.0 / 743
MCL Help and MCL Help Map.pfsl / 743
Examples Folder / 743
Interface Tools folder / 747
Library folder / 747
ThreadsLib / 748
pmcl-kernel, pmcl-library, and pmcl-compiler / 748

In this appendix you will find a summary of the contents of the MCL 4.0 CD
and instructions for installing MCL 4.0 and MCL 3.1 from floppy disks.

What is on the MCL 4.0 CD-ROM

Highlights

This folder includes aliases to some of the more important, interesting
and useful contents of the MCL 4.0 CD.

MCL 4.0

This folder contains a complete installed copy of Macintosh Common
Lisp 4.0 for PowerPC Macs, ready for use on a hard disk. To install MCL
4.0 on your hard disk, simply drag this folder onto your hard disk.
Note that you may not need to place the contents of the ThreadsLib
folder in your Extensions Folder; see the Release Notes and the Getting
Started Guide for more information.

MCL 3.1

This folder contains a complete installed copy of Macintosh Common
Lisp 3.1 for 68K Macs, ready for use on a hard disk. To install MCL 3.1
on your hard disk, simply drag this folder onto your hard disk. If you
wish to use the PTable extension for enabling EGC, place it in the
extensions folder of your System Folder and restart your Macintosh.
See the Release Notes and the Getting Started Guide for more
information.

MCL 4.0 “Demo Version”

This folder contains a free demo version of MCL. This is a duration-
limited version of MCL 4.0 that runs for 15 minutes per launch or until
a specified expiration date via a password key supplied by Digitool.
This MCL demo version and applications generated with it may be
freely distributed.
740 Macintosh Common Lisp Reference

MCL 4.0/3.1 Documentation

This folder contains softcopy of the combined documentation for MCL
4.0 and MCL 3.1 with complete indices, which can be read using Adobe
Acrobat Exchange. If you do not have Adobe Acrobat Reader you will
find an installer program for it in “Developer Essentials:Utilities:.”

MCL Floppy Disks

This folder contains two sets of folders with the contents of the MCL 4.0
and MCL 3.1 in segmented archives suitable for copying to floppy
disks. Instructions for installing from these archives are given in the
Getting Started Guide.

Additional MCL Source Code

This folder contains the sources to some of the built-in MCL objects,
such as views, dialogs, menus, and the FRED editor. It also includes a
file you can load to make edit-definition (meta-.) work for the
definitions contained in the code files. (For MCL 4.0, this information is
included in the application.)

Source code in this folder is provided as is, and is completely
unsupported. If you attempt to program MCL using information
gleaned from this source code, we will not be able to provide technical
support, nor can we guarantee that your code will work in future
versions of MCL.

Goodies from Digitool

This folder contains additional software from the MCL development
team that is not part of the standard MCL product. The contents of this
folder are from Digitool but are unsupported and may be untested.

This folder also includes earlier versions of MCL, such as MCL 3.0 and
MCL 3.9 (the first PowerPC-native release of MCL), along with their
respective documentation.
Appendix E: MCL 4.0 CD Contents 741

Goodies from MCL Friends

This folder contains a number of standalone applications written in
MCL and contributed by their authors.

User Contributed Code

This large folder contains sample Lisp source code and other items that
may be of interest to Common Lisp users. The contents of this folder
have been contributed by users and are unsupported and may be
untested.

Developer Essentials

This folder contains selections of the Developer Essentials folder
included on several Apple CD-ROMs for programmers. The folder
includes tools and information that may be of interest to Macintosh
programmers using any development system. It includes utilities,
online versions of Macintosh programming documentation, Macintosh
interfaces for several programming languages, and versions of
Macintosh system software.

Mail Archives & Other Docs

This folder includes the info-mcl and comp.lang.lisp archives. It also
contains the Lisp FAQ and standards, a snapshot of the Digitool WWW
site, and miscellaneous information.

Contents/Index

This folder contains aliases to all the first level of subfolders on the MCL
4.0 CD shown by name and open for a quick view of their contents.
742 Macintosh Common Lisp Reference

On Location Indexes

This folder contains an On Location v2.0 index of the information on the
MCL 4.0 CD. This index used with On Location v2.0 will allow searches
of all filenames on the CD-ROM as well as the contents of all text files
and files of several other types.

◆ Note: Some text files on the CD-ROM are larger than the 32K size limit
of SimpleText utility (in “Developer Essentials:Utilitites:”). Use the
MCL editor FRED or another word processor to open such files.

What is in the MCL 4.0 folder

MCL 4.0

This is the MCL 4.0 application.

MCL Help and MCL Help Map.pfsl

You can modify the “MCL Help” Library file to customize the
documentation strings it contains. You must then create a new “map”
using “make-help-map.lisp”. This file contains instructions.

Examples Folder

The Examples folder contains various MCL utilities. Each of the files
contains comments that serve as brief documentation.

■ animated-cursor.lisp
Provides ability to cycle through cursor resources to get effects such as
the spinning beach ball.

■ appleevent-toolkit.lisp
Provides useful functions for sending and processing AppleEvents.
Appendix E: MCL 4.0 CD Contents 743

■ array-dialog-item.lisp
A Table-Dialog-Item subclass for displaying arrays.

■ assorted-fred-commands.lisp
FRED, MCL 4.0’s editor, is fully programmable. This file contains
examples of additional FRED commands.

■ auto-fill.lisp
A simple autofill mode for FRED.

■ balloon-help-menu.lisp
This file lets you add your own menu items to the Balloon Help menu,
which appears on the System 7 menubar.

■ Binhex folder
The two files in this folder contain an example of a “stand-alone”
application: follow the instruction in Binhex.lisp to create an
application in which the user need not know that he or she is using a
Lisp-based system. The application encodes and decodes “BinHex”
files.

■ cfm-mover.lisp
This file defines utility similar to the Font/DA Mover for moving CFM
libraries between files.

■ check-and-change.lisp
This file contains code used in an example in Chapter 5: Dialog Items
and Dialogs. The code illustrates the use of enter-key-handler and exit-
key-handler.

■ config.lisp
This file generates a report of your current Macintosh hardware
configuration and Macintosh Common Lisp environment.

■ define-interrupt-handler.lisp
Provides the ability to write interrupt handlers in Lisp rather than C or
Pascal.

■ defobfun-to-defmethod.lisp
This file automates conversion of simple Object Lisp programs (Object
Lisp was MACL 1.x’s object system) to CLOS (the Common Lisp Object
System used by MCL since version 2.0). In a FRED window, it changes
instances of (defobfun (function type) args body) to (defmethod
function ((type type) args) body). Queries before each change.

■ driver.lisp
An example of how to access the Device Manager’s drivers from
Macintosh Common Lisp. Used by “serial-streams.lisp”.

■ escape-key.lisp
Makes the Escape key cause the next character to behave as if the Meta
key were pressed.

■ eval-server.lisp
Handles eval, dosc, and scpt AppleEvents.
744 Macintosh Common Lisp Reference

■ fasl-concatenate.lisp
Defines the function fasl-concatenate, which can be used to concatenate
multiple fasl or multiple pfsl files into a single file. This will speed
up loading and ease distribution.

■ fast-slot-value.lisp
Optimization for slot value when the class is known at compile time.

■ FF Examples folder
Three of the files in this folder (“ff-example.c”, “ff-example.lisp”, and
“ff-example.test”) contain code to demonstrate the use of MCL 4.0’s
Foreign Function interface. The fourth file (“ff-example.c.o”) is the
object file, compiled by the MPW C compiler, for “ff-example.c”.

The “ff-example.lisp” file (it’s in “examples:ff examples:”) contains the
following:

 (ff-load “ff;ff-example.c.o”

 :ffenv-name 'test

 :libraries '(“clib;StdCLib.o”

 “mpwlib;interface.o”))

The libraries referred to are as they exist in MPW 3.2 and 3.2.x. If you
are using an earlier version of MPW, you will need to reference
“clib;Cinterface.o” before “mpwlib;interface.o”.

■ fred-word-completion.lisp
Provides word completion for symbols in a FRED window.

■ grapher.lisp
Implements the base functionality for node and grapher windows.

■ load-all-patches.lisp
A simple alternative patch loading mechanism.

■ mac-file-io.lisp
This file implements something similar to the high-level file I/O
primites in Inside Macintosh.

■ mark-menu.lisp
Adds a menu of editor-window marks, much like MPW’s. Marks are
not saved with the file.

■ mouse-copy.lisp
When this file is loaded, command-click copies the expression nearest
the cursor location to the location of the insertion point.

■ NotInROM folder
This folder contains Michael Engber’s package implementing most of
the “traps” that are “Not in ROM”.

■ old-dialog-hooks.lisp
Hooks to make the new dialog package more compatible with that of
MACL 1.x. This code will run, but is intended principally as
documentation of what has changed since that version.

■ old-file-search.lisp
Macintosh Common Lisp 2.0 version of Search Files dialog.
Appendix E: MCL 4.0 CD Contents 745

■ pict-scrap.lisp
This file defines a scrap-handler for scraps of type PICT. Once it is
loaded, windows that copy and paste PICTs are able to share their
work with other applications.

■ picture-files.lisp
Examples of reading and writing picture files, adapted from the code
on page V-88 of Inside Macintosh. Shows how to draw a PICT file in a
window.

■ print-class-tree.lisp
Code to print a simple class-tree.

■ processes.lisp
Code to launch or bring forward a numbr of applications from within
MCL

■ progress-indicator.lisp
Creates a window for monitoring the progress of any task.

■ query-replace.lisp
Implements a query-replace function in FRED, using Control-Meta-R.

■ scrolling-windows.lisp
Implements a new class of windows that contain scroll bars and a
scrollable area.

■ serial-streams.lisp
Implements a class of serial streams, which inherit from drivers and
provide a stream interface to the serial drivers on the Macintosh.

■ shapes-code.lisp
The Lisp version of a classic Mac programming exercise. Creates a
window containing a drawing area and two buttons: “circles” and
“squares.” Clicking in the drawing area draws a circle or square;
clicking either button redraws all the shapes.

■ text-edit-dialog-item.lisp
Implements text-edit-dialog-items. If FRED is too big for your
application, you may wish to replace editable-text-dialog-items with
text-edit-dialog-items.

■ thermometer.lisp
A simple thermometer that displays one or more values in a
rectangular area. GC-THERMOMETER and FILE-THERMOMETER
are two examples provided in the file.

■ timers.lisp
This code implements Genera style timers.
746 Macintosh Common Lisp Reference

■ toolserver.lisp
AppleEvents interface to ToolServer (to use, launch ToolServer first).
ToolServer is a stand-alone, tool-execution environment for Macintosh
Programmer Workshop (MPW) tools such as the C and Pascal
compilers and linker. ToolServer makes use of the AppleEvent feature
of System 7. A copy of ToolServer is found in the “Developer
Essentials” folder on the MCL 4.0 CD. The latest version is always
available on E.T.O. (Essentials - Tools - Objects), a CD-ROM
subscription series distributed by Apple through APDA.

■ turtles.Lisp
A simple object-oriented turtle graphics package.

■ uk-keyboard.lisp
A FRED extension to make the sharp sign character (“#”) easier to type
on keyboards like those used in the United Kingdom.

■ View-Example.lisp
A simple example of views code.

■ windoid-key-events.lisp
How to make a windoid handle key events and null events.

Interface Tools folder

Contains a system that helps you design dialogs interactively.
Instructions for its use are in the file About Interface Tools.

Library folder

Most of the files in the Library folder contain code that provides
functionality that is not included in the MCL 4.0 image. If you need to
use the interface to QuickDraw, for example, this form will load it:
(require :quickdraw)

Some of the files in the Library folder contain code that is autoloaded
by MCL 4.0 when you try to use its functionality (the first time you type
a form that uses LOOP, for example, “loop.lisp” is automatically
loaded). These are files that will be autoloaded (if there is a compiled
version of the file, it will be used instead): “help-manager.lisp”, “lisp-
package.lisp”, “loop.lisp”, and “resources.lisp”.
Appendix E: MCL 4.0 CD Contents 747

A few of the Library files contain code that is already a part of the MCL
4.0 image (that is, you never need to load them). These files, provided
for people who want to write extensions or who are just curious, are: the
files in the Inspector folder, and the files “scroll-bar-dialog-
items.lisp,”“pop-up-menu.lisp,” and “save-application-dialog.lisp.”

ThreadsLib

This folder contains the “ThreadsLib” extension. You do not need this
extension, and must not use this file, if your system already has the
Thread Manager. Check its accompanying notes for details.

pmcl-kernel, pmcl-library, and pmcl-compiler

These are shared libraries used by MCL 4.0. They should remain in the
same folder as MCL 4.0 or be aliased from your Extensions Folder.
748 Macintosh Common Lisp Reference

Index

Symbols
#$ macro 636
#_ macro 636
#@ macro 636
#@ reader macro 70
#\∂ 285
#1P macro 636
#2P macro 636
#3P macro 636
#4P macro 636
@ (at symbol) variable 351

A
:a0-:a4 keyword 593, 609, 611
:a5 keyword 611
abort-break function 328
:action-function keyword 243, 244
active-processes variable 427
Add Horizontal Guide menu item 273
Add Vertical Guide menu item 273
add-dialog-items (See add-subviews)
Additional MCL Source Code folder on the

MCL 4.0 CD 741
add-key-handler generic function 365
add-menu-items generic function 104
add-modeline generic function 57
add-points function 73
add-post-gc-hook function 659
add-pre-gc-hook function 659
add-scroller function 488
add-self-to-dialog (obsolete function)

198
add-self-to-dialog (See install-

view-in-window)
add-subviews generic function 139, 187
add-to-killed-strings function 513
add-to-shared-library-search-path

function 560
advise macro 346
advisedp macro 348
advising 346–348
AEDesc record type 405

AEDisposeDesc trap 405
ae-error macro 405
ae-error-str macro 405
_AEInteractWithUser 406
:after keyword 341
Alert icons 241
alerts

creating 185
:allow-constant-substitution

keyword 665
:allow-empty-strings keyword 243
:allow-returns keyword 480
allow-returns-p generic function 210, 480
:allow-tabs keyword 480
allow-tabs-p generic function 210, 480
:allow-tail-recursion-elimination

keyword 664
:allow-transforms keyword 665
all-processes variable 428
always-eval-user-defvars variable

669
Apple Events 391–410

application variable 394
call installed queued reply handler 408
check required parameters 406
deinstall handler 407
errors 404, 405
events with indefinite extent 405
extract Lisp path from FSSPEC 406
install handler 407
install queued reply handler 408
no queued reply handler 409
Open Application Document handler 402
Open Application handler 400
Open Documents handler 402
Print Documents handler 403
Quit Application handler 401
wait state 406

Apple events
standard 400

Apple menu 95, 124
appleevent-error condition 404
appleevent-idle function 406
apple-menu variable 97
application class 392, 394
application variable 394
application-about-dialog generic

function 398
application-about-view generic function

397
749

application-error generic function
395

application-eval-enqueue generic
function 399

application-file-creator generic
function 397

application-name generic function 397
application-overwrite-dialog generic

function 395
application-resource-file generic

function 398
application-resume-event-handler

generic function 399
applications, creating 674–681
application-sizes generic function 398
application-suspend-event-handler

generic function 399
apropos function 320
Apropos menu item 351
apropos-list function 321
arcs

erase 717
fill 718
invert pixels 717
paint 716

arglist function 322, 336
arglist-on-space variable 35, 39
argument lists

displaying 39
printing 46, 318

array elements 645
arrays 645–648
arrow-cursor variable 177, 383
ascent 78, 81
ash (Common Lisp function) 638
autoclose-inactive-listeners

variable 436
autoload-lisp-package variable 648
autoload-traps variable 556
:auto-position keyword 155
:auto-update-default keyword 227

B
background-event-ticks variable 378
background-sleep-ticks variable 377
backtrace 325, 334–337
backtrace-hide-internal-frames-p

variable 337

backtrace-internal-functions
variable 337

backtrace-on-break variable 334
base character 634
beep 506
:before keyword 341
_BeginUpdate trap 370
bignump function 637
bind-io-control-vars-per-process

variable 436
bitmaps

copy bits 727
create 726
scrolling rectangle 727

black-color variable 256
black-pattern variable 89
black-rgb variable 256
blue-color variable 256
:body keyword 190, 196, 262, 480
:boolean keyword 590, 591, 593
:border-p keyword 203
:bottom keyword 162
Boyer-Moore search 68
Break (command on Lisp menu) 331
break function 332
break loop 329–334

MCL forms associated with 332–334
break-loop-when-uninterruptable

variable 379
break-on-errors variable 333
break-on-warnings variable 333
brown-color variable 256
Buffer font specifications 472
buffer marks

definition 453, 455
MCL expressions relating to 456–476

buffer-bwd-sexp function 470
buffer-capitalize-region function 467
buffer-char function 463
buffer-char-font (See buffer-char-

font-spec)
buffer-char-font-spec function 187, 473
buffer-char-pos function 468
buffer-char-replace function 464
:buffer-chunk-size keyword 481
buffer-column function 463
buffer-current-font-spec function 473
buffer-current-sexp function 465
buffer-current-sexp-bounds function

467
750 Macintosh Common Lisp Reference

buffer-current-sexp-start function 466
buffer-delete function 467
buffer-downcase-region function 467
buffer-font-codes function 475
buffer-fwd-sexp function 470
buffer-getprop function 460
buffer-get-style function 476
buffer-insert function 464
buffer-insert-file function 471, 472
buffer-insert-substring function 465
buffer-insert-with-style function 465
buffer-line function 461
buffer-line-end function 462
buffer-line-start function 462
buffer-mark 455
buffer-mark class 456
buffer-mark-p function 187, 457
buffer-modcnt function 459
buffer-next-font-change function 477
buffer-not-char-pos function 468
buffer-plist function 460
buffer-position function 461
buffer-previous-font-change function

477
buffer-putprop function 461
buffer-remove-unused-fonts function

476
buffer-replace-font (See buffer-

replace-font-spec)
buffer-replace-font-codes function 476
buffer-replace-font-spec function 187,

474
buffers 453–455

definition 453, 455
select, in Fred 50

buffer-set-font (See buffer-set-
font-spec)

buffer-set-font-codes function 475
buffer-set-font-spec function 187, 474
buffer-set-style function 477
buffer-size function 459
buffer-skip-fwd-wsp&comments function

187, 471
buffer-string-pos function 469
buffer-substring function 464
buffer-substring-p function 469
buffer-upcase-region function 467
buffer-word-bounds function 469
buffer-write-file 472
buffer-write-file function 471

built-in-class class 620
button dialog items

creating instances 203
button-dialog-item class 188, 202
buttons 202–203, 204

default 203–205
radio 213–215

:button-string keyword 309
:by-address keyword 607
:by-reference keyword 607
byte-length function 643
:by-value keyword 607

C
C language

calling Macintosh Common Lisp 613
calling sequence 550
records of type AUTOMATIC 533
with Foreign Function Interface 615

caches 630–631
call-next-method function 631, 632
Cancel button 247
cancel function 328
:cancel keyword 247
cancel-terminate-when-unreachable

function 658
:cancel-text keyword 242
cancel-text keyword 241
caps-lock-key-p function 374
:case keyword 287
catch-abort (See restart-case)
catch-cancel macro 240
catch-error (See handler-case)
catch-error-quietly (See ignore-

errors)
Caution icon 241
ccl::compile-time-class class 620
ccl::std-class class 620
cell-contents generic function 219
cell-deselect generic function 224
cell-font generic function 222
:cell-fonts keyword 219
cell-position generic function 225
cell-select generic function 224
cell-selected-p generic function 224
cell-size generic function 222
:cell-size keyword 219
cell-to-index generic function 236
Index 751

:centered keyword 162
change-key-handler generic function 365
changes in

Macintosh Common Lisp 3.0 397, 400
:char keyword 608
characters

capitalize 54
literal 53
lowercase 53
outputting from stream 440
quoted 53
read from stream 441
unread from stream 441

:check-args keyword 603, 607
checkbox dialog items 212–213

creating instances 212
check-box-check generic function 213
check-box-checked-p generic function 213
:check-box-checked-p keyword 212
check-box-dialog-item class 188, 212
check-box-uncheck generic function 213
check-call-next-method-with-args

variable 631, 632
:check-error keyword 589, 591
check-required-params function 406
check-type macro, notinline version of 670
choose-directory-dialog function 310
choose-file-default-directory

function 310
choose-file-dialog function 309
choose-new-file-dialog function 309
:chunk-size keyword 458
class

methods specializing on 353
class class 620
:class keyword 157, 158, 159, 187
class-class-slots generic function 625
class-direct-class-slots generic

function 625
class-direct-instance-slots generic

function 624
class-direct-subclasses generic

function 622, 623
classes

class slots 625
direct class slots 625
direct instance slots 624
direct subclasses 622
direct superclasses 623
hierarchy 633

instance slots 625
precedence list 633
precedence list of methods specialized on

class 623
prototype instance 624

class-instance-slots generic function
625

class-precedence-list generic function
623

class-prototype generic function 624
clear generic function 121, 178, 211, 507
clear-all-gf-caches function 631
clear-clos-caches function 630, 631
clear-gf-cache function 631
clear-mini-buffer variable 39, 514
clear-process-run-time function 422
clear-record macro 582
clear-specializer-direct-methods-

caches function 630
_ClipAbove trap 368
Clipboard 456
clip-rect generic function 693
clip-region generic function 692
:close-box-p keyword 156, 483
:closed keyword 247
close-region generic function 721
code definition for symbol, examining 45, 46,

318
collapse-selection generic function 499
:color keyword 255
Color Picker 250, 255
Color Window 275
color-available variable 251
color-blue function 252
color-green function 252
:color-P keyword 187
:color-p keyword 155, 482
color-red function 251
colors 249–262

blue 252
Color Picker 250, 255
Color QuickDraw 251
component values 253
dialog items 262
display as same color 253
encoding 250
green 252
implementation 249
menu bars 98, 261
menu items 261
752 Macintosh Common Lisp Reference

menus 261
red 251
returning encoded color 251
RGB records 253, 254, 255, 256
values 253
windows 257–258, 262

color-to-rgb function 253
color-values function 251, 253
color-window-mixin (See '

COLOR-P')
command keystrokes

Command-period 412
Command-slash 412
Option-command-period 412

command tables 516–527
definition 517

command-key generic function 115
:command-key keyword 111, 122
command-key-p function 374
Command-Meta-click 46
Command-period keystroke 412
Command-slash keystroke 412
compatibility

between MCL version 2 and earlier
versions 648

implementation of file system in MCL
version 2 280

compilation 661–667
compiler policy objects 662
eliminating tail recursion 662
options 315–317
self-referential calls 662

compile-definitions 661
compile-definitions variable 337, 661
compiler policy objects 662
compiler-policy class 663
compute-applicable-methods generic

function 631
comtab 519, 523

definition 517
shadowing 519

:comtab keyword 478, 481, 483
comtab variable 478, 519, 523
comtab-find-keys function 527
comtab-get-key function 526
comtab-key-documentation function 526
comtabp function 525
comtab-set-key function 525
configure-egc function 653
container 135

definition of 126
:content keyword 169, 262
Contents/Index folder on the MCL 4.0 CD 742
context lines 40
continue function 333
Control key 42
Control modifier 42
Control-A keystroke 47
Control-B keystroke 47
Control-D keystroke 55
Control-E keystroke 47
Control–Equal sign keystroke 45, 319
Control-F keystroke 47
Control-G keystroke 64
Control-K keystroke 55
control-key-mapping variable 39
control-key-p function 374
Control–Left Arrow keystroke 47
Control-M 319
Control-M keystroke 57
Control-Meta-A keystroke 47
Control-Meta-B keystroke 47
Control-Meta–close parenthesis keystroke 48
Control-Meta-Delete keystroke 55
Control-Meta-E keystroke 47
Control-Meta-F keystroke 47
Control-Meta-H keystroke 50
Control-Meta-K keystroke 55
Control-Meta-L keystroke 59
Control-Meta-N keystroke 48
Control-Meta-number keystroke 61
Control-Meta-O keystroke 52
Control-Meta–open parenthesis keystroke 48
Control-Meta-P keystroke 48
Control-Meta-Q keystroke 52
Control-Meta-semicolon keystroke 56, 58
Control-Meta-Shift–Down Arrow keystroke 51
Control-Meta-Shift-M keystroke 57
Control-Meta-Shift-N keystroke 51
Control-Meta-Shift-P keystroke 51
Control-Meta–Shift–Up Arrow keystroke 51
Control-Meta–Space bar keystroke 50
Control-Meta-T keystroke 54
Control-Meta-underscore keystroke 60
Control-N keystroke 47
Control-number keystroke 61
Control-O keystroke 52
Control-P keystroke 47
Control-Q keystroke 53, 64
Control–question mark keystroke 45, 318
Index 753

Control-R keystroke 64
Control-Return keystroke 52
Control-Right Arrow key 47
Control-S Control-W keystroke 64
Control-S Control-Y keystroke 64
Control-S keystroke 64
Control-S Meta-W keystroke 64
Control-Shift-A keystroke 50
Control-Shift-E keystroke 50
Control-Shift–Left Arrow keystroke 49
Control-Shift-N keystroke 50
Control-Shift-P keystroke 50
Control-Shift–Right Arrow keystroke 50
Control-Shift-V keystroke 51
Control–Space bar keystroke 54
Control-Tab keystroke 48
Control-U keystroke 61
Control-underscore keystroke 60
Control-V keystroke 48
Control-W keystroke 52, 56, 64
Control-X Control-A keystroke 46, 318
Control-X Control-C keystroke 57
Control-X Control-D keystroke 46, 319
Control-X Control-E keystroke 57
Control-X Control-F keystroke (See Control-X

Control-V keystroke)
Control-X Control-I 46, 319
Control-X Control-I keystroke 46, 319, 349
Control-X Control-M 319
Control-X Control-M keystroke 57
Control-X Control-R 319
Control-X Control-R keystroke 57
Control-X Control-S keystroke 59
Control-X Control–Space bar keystroke 56
Control-X Control-V keystroke 59
Control-X Control-W keystroke 59
Control-X Control-X keystroke 51, 54
Control-X H keystroke 50
Control-X semicolon keystroke 58
Control-X U keystroke 60
control-x-comtab variable 524
Control-Y keystroke 52, 64
convert-coordinates function 152
convert-kanji-fred function 643
Copy command 36
copy generic function 121, 178, 211, 351, 507
copy-bits function 727
copy-comtab function 524
copy-file function 303
%copy-float function 613

copy-instance generic function 630
copy-record macro 582
copy-region function 720
:copy-styles-p keyword 478, 480, 483
create-file function 300
creating instances

button dialog items 203
checkbox dialog items 212
default button dialog items 204
dialog items 189
editable-text dialog items 207
floating windows 180
Fred dialog items 479
Fred windows 481
menu items 111
menus 100
pop-up menus 227
radio-button dialog items 214
scroll-bar dialog items 229
sequence dialog items 235
simple views 130
static-text dialog items 206
table dialog items 218
views 131
window menu items 122
windows 154

:cstring keyword 605
current expression, definition 44
current-character variable 519, 523
current-compiler-policy function 666
current-event variable 361, 375, 376
current-file-compiler-policy function

666
current-key-handler generic function

206, 364
current-keystroke variable 362, 523
current-process variable 413, 425
current-view variable 133
cursor 379
cursorhook variable 133, 380, 382
cursors

arrow 383
I-beam 383
setting shape 381, 382
updating 382
updating shape 380
visibility, checking 492
watch 383

cursorsdetermining shape 380
Cut command 36
754 Macintosh Common Lisp Reference

cut generic function 121, 178, 211, 351, 507

D
:d0 keyword 590
:d0-:d7 keyword 593, 609, 611
dark-gray-color variable 256
dark-gray-pattern variable 89
dark-green-color variable 256
deactivate-macptr function 660
dead keys 43
debugging 313–357

MCL functions related to debugging 320–
327

debugging commands in Fred 317–320
declaration-information function 663
default button 204, 205
default buttons 203–205
default-button dialog items

creating instances 204
default-button generic function 204
:default-button keyword 203
default-button-dialog-item class 204
default-button-p generic function 205
:default-item keyword 227
:default-menu-background keyword 98,

261
default-menubar variable 96
:default-menu-item-title keyword 98,

107, 261
:default-menu-title keyword 98, 261
default-pathname-defaults variable

297
default-process-stackseg-size

variable 416
default-quantum variable 417
:defaults keyword 287
defccallable macro 550
deffcfun macro 603
defffun macro 603
deffpfun macro 603
def-fred-comtab macro 516
define-entry-point macro 599
def-load-pointers macro 680
def-logical-directory function 311
def-logical-pathname (obsolete function)

312
defpascal macro 550
defrecord macro 568

defstruct macro 670
deftrap macro 562
deinstall-appleevent-handler function

407
delete 509
Delete keystroke 55, 64
delete-file function 299
delete-post-gc-hook function 659
delete-pre-gc-hook function 659
deletion 55
descent 78, 81
Design Dialogs menu item 273
Developer Essentials folder on the MCL 4.0 CD

742
:device keyword 286
dialog box

Document-with-Grow 274
dialog boxes 273–274
dialog class 245
dialog item

edit 276
dialog items

sequence-dialog-item 234
dialog items 188–237

activate event handler 200
add 275
add to window 198
Alert icons 241
associated function 192
button 202
Caution icon 241
checkboxes 212–213
color of parts 196
color of parts, returning 197
color of parts, setting 196
colors 262
creating instances 189
deactivate event handler 200
default button 204
default button, setting 205
default size 201
default width correction 201
definition 184, 188
disable 197
editable-text 206–211
enable 197
enabled, checking if 198
event handling 193
find 248
find named sibling 138
Index 755

find named subview 138
focus on container and draw contents 193
focused 201
font 195
font codes 83
font codes set 84
font setting 195
font specifiers 195
font specifiers setting 196
functions, advanced 198
GrafPort, use specific 201
graphic dialog items 241
handle 199
items in view 191
MCL functions related to dialog items 189–

202
Note icon 241
printing 506
radio buttons 213–215
remove from window 199
sample files 198
size 193
size setting 194
specialized 202
static-text 205–206
Stop icon 241
table dialog items 216–226
text 194
text setting 194

dialog-item class 189
dialog-item-action generic function 192

check-box-dialog-item 212
:dialog-item-action keyword 190, 192,

228
dialog-item-action-function generic

function 192
:dialog-item-colors (See

part-color-list)
dialog-item-default-size (See view-

default-size)
dialog-item-dialog (See view-

container)
dialog-item-disable generic function 197
dialog-item-enable generic function 197
dialog-item-enabled-p generic function

198
:dialog-item-enabled-p keyword 190,

480
dialog-item-font (See view-font)
dialog-item-handle generic function 199

:dialog-item-handle keyword 190
dialog-item-nick-name (See view-

nick-name)
dialog-item-position (See view-

position)
dialog-items generic function 191
dialog-item-size (See view-size)
dialog-item-text generic function 194, 206
:dialog-item-text keyword 190, 206, 228,

480
dialog-item-width-correction generic

function 201
dialogs 128, 185–188, 237–239, 271–278

cancel 239
changed dialog functions 187–188
changes in Macintosh Common Lisp

version 2 186
creating 273
creating with Designer 272
definition 128, 245
display-message turnkey dialog 240
editing 272
get-string-from-user turnkey dialog 242
modal 237
modeless 237
select-item-from-list turnkey dialog 244
turnkey dialog boxes 239
yes-or-no turnkey dialog 241

difference-region function 723
:direction keyword 229, 439
directories

default directory 310
default directory set 310
Macintosh default 293
MCL operations related to directories 299–

302
structured 295

:directories keyword 296
directory function 296
:directory keyword 286, 309, 310
directoryp function 296
directory-pathname-p function 298
:directory-pathnames keyword 296
:disabled keyword 112, 122
disassemble function 336
disk

eject 306
eject and unmount 307
eject, checking 307

disk-ejected-p function 307
756 Macintosh Common Lisp Reference

displaced-array-p function 647
dispose-ffenv function 602
dispose-record macro 405, 575
dispose-region function 719
_DisposPtr trap 533
_DisposRgn trap 368
Document dialog box 274
:document keyword 156, 483
documentation 352

conventions 22–27
documentation generic function 323, 336

documentation types 323
Document-with-Grow dialog box 274
:document-with-grow keyword 156, 483
Document-with-Zoom dialog box 274
:document-with-zoom keyword 156, 483
:do-it keyword 346
do-subviews macro 137
:double keyword 605, 608
double quotation mark 53
double-click-p function 373
double-click-spacing-p function 374
Double-Edge-Box dialog box 274
:double-edge-box keyword 156, 483
drain-termination-queue function 658
draw-cell-contents generic function 219,

220
draw-menubar-if function 110
:draw-outline keyword 480
draw-picture generic function 729
draw-scroller-outline generic function

491
drive-name function 308
drive-number function 308

E
ed-arglist generic function 46, 318
ed-back-to-indentation generic function

48
ed-backward-char generic function 47
ed-backward-select-char generic

function 49
ed-backward-select-sexp generic

function 49
ed-backward-select-word generic

function 49
ed-backward-sexp generic function 47
ed-backward-word generic function 47

ed-beep function 506
ed-beginning-of-buffer generic function

48
ed-beginning-of-line generic function 47
ed-bwd-up-list generic function 48
ed-capitalize-word generic function 54
ed-copy-region-as-kill generic function

56
ed-current-sexp generic function 496
ed-current-symbol generic function 495
ed-delete-char generic function 55
ed-delete-forward-whitespace generic

function 56
ed-delete-horizontal-whitespace

generic function 56
ed-delete-whitespace generic function 56
ed-delete-with-undo generic function

509, 510
ed-delete-word generic function 55
ed-downcase-word generic function 53
ed-edit-definition generic function 45,

318
ed-end-of-buffer generic function 48
ed-end-of-line generic function 47
ed-end-top-level-sexp generic function

47
ed-eval-current-sexp generic function 57
ed-eval-or-compile-current-sexp

generic function 57
ed-eval-or-compile-top-level-sexp

generic function 57
ed-exchange-point-and-mark generic

function 51, 54
ed-forward-char generic function 47
ed-forward-select-char generic function

49
ed-forward-select-sexp generic function

50
ed-forward-select-word generic function

49
ed-forward-sexp generic function 47
ed-forward-word generic function 47
ed-fwd-up-list generic function 48
ed-get-documentation generic function

46, 319
ed-help function 45, 318
ed-history-undo generic function 60
ed-indent-comment generic function 58
ed-indent-differently generic function

48
Index 757

ed-indent-for-lisp generic function 52
ed-indent-sexp generic function 52
ed-insert-char generic function 494
ed-insert-double-quotes generic

function 53
ed-insert-parens generic function 53
ed-insert-sharp-comment generic

function 53
ed-insert-with-style generic function

494
ed-inspect-current-sexp generic

function 46, 319
ed-i-search-forward generic function 64
ed-i-search-reverse generic function 64
Edit Dialog menu item 273
Edit Menubar menu item 273
editable-text dialog item 455
editable-text dialog items 206–211

creating instances 207
editable-text-dialog-item class 188,

206
edit-definition function 336
edit-definition-p function 324
editing definition of source code 352
edit-menu variable 97
edit-select-file generic function 59
ed-kill-backward-sexp generic function

55
ed-kill-comment generic function 56, 58
ed-kill-forward-sexp generic function 55
ed-kill-line generic function 55
ed-kill-region generic function 56
ed-kill-selection generic function 513
ed-last-buffer generic function 59
ed-macroexpand-1-current-sexp

generic function 57
ed-macroexpand-current-sexp generic

function 57
ed-move-over-close-and-reindent

generic function 48
ed-newline-and-indent generic function

52
ed-next-line generic function 47
ed-next-list generic function 48
ed-next-screen generic function 48
ed-numeric-argument generic function 61
ed-open-line generic function 52
ed-previous-line generic function 47
ed-previous-list generic function 48
ed-previous-screen generic function 47

ed-print-history generic function 60
ed-push/pop-mark-ring generic function

54
ed-read-current-sexp generic function

57, 319
ed-rubout-char generic function 55
ed-rubout-word generic function 55
ed-select-beginning-of-line generic

function 50
ed-select-current-sexp generic function

50
ed-select-endof-line generic function 50
ed-select-next-line generic function 50
ed-select-next-list generic function 51
ed-select-next-screen generic function

51
ed-select-previous-line generic

function 50
ed-select-previous-list generic

function 51
ed-select-previous-screen generic

function 51
ed-select-top-level-sexp generic

function 50
ed-self-insert generic function 523
ed-set-comment-column generic function

58
ed-set-view-font function 501
ed-skip-fwd-wsp&comments (See

buffer-skip-fwd-
wsp&comments)

ed-split-line generic function 52
ed-start-top-level-sexp generic

function 47
ed-transpose-sexp generic function 54
ed-transpose-words generic function 54
ed-universal-argument generic function

61
ed-view-font-codes function 502
ed-what-cursor-position generic

function 45, 319
ed-yank generic function 52
ed-yank-pop generic function 52
egc function 652
egc function 651
egc-active-p function 652
egc-configuration function 653
egc-enabled-p function 652
eject&unmount-disk function 307
eject-disk function 306
758 Macintosh Common Lisp Reference

elt (Common Lisp function) 236
empty-rect-p function 706
empty-region-p function 724
enable-automatic-termination

variable 658
_EndUpdate trap 370
Enter keystroke 57
enter-key-handler generic function 208,

209
:entry-names keyword 601
ephemeral garbage collection 650

activating 652
configuring 653
counting invocations 655
enabling 651, 652
enabling programmatically 653
timing 655

equal-rect function 706
equal-region-p function 724
:erase-anonymous-invalidations

keyword 142, 157
erase-arc generic function 717
erase-oval generic function 710
erase-polygon generic function 732
erase-rect generic function 708
erase-region generic function 725
erase-round-rect generic function 714
error-print-circle variable 334
errors 313–357

error handling 327–334
Escape key as Meta modifier 42
eval-enqueue function 388
evaluator

compiling 661
standard 661

event handler 375
activate view 363
click in view 361, 369
deactivate view 363
disable event processing during execution

of forms 379
mouse 381
mouse button up 367
null event 366
queue form for evaluation 388
release key 367
release mouse button 367
update window 370
view activate 363
view deactivate 363

window 379
window key up 367
window no event 366
window select 367
window update 370
window zoom 368

event ticks 377, 378
event-dispatch function 370, 375
eventhook variable 375, 376
event-keystroke function 520
events 360–387

interrupts 388
queued 388
time-consuming events 388

event-ticks function 370, 378
$everyEvent trap constant 376
Examples folder on the MCL 4.0 CD 743
examples of code 32, 36, 42, 43, 209, 217

Apple Events 410
application programming 263
calling traps 564
communicating with HyperCard 410
defining a scrap handler 383
DEFRECORD macro 569
dialog boxes with Alert icons 241
dialog functions, obsolete 186
dialog items 185, 198
dialog items, implementing custom class

237
ephemeral garbage collector 651
font menus 124
Foreign Function Interface 615

and C language 615
testing 615

help balloons 131
icons 189
input/output stream 438
interface building 263
interface programming 687
logical pathnames, setting 602
MCL class hierarchy 633
menu-item-update methods 123
menus 93
:pict scrap handler 386
pop-up menus 227
QuickDraw 687
stack allocation 534
using class-direct-subclasses 623
using invalidate-view 141
using set-view-font 167
Index 759

using view-click-event-handler 151
using view-draw-contents 371
windoid event handling 180

execution stack 329
exit-key-handler generic function 208, 209
expand-logical-namestring (obsolete function)

297
expressions

current, definition 44
inspecting 46, 319

extended characters 640
extended keyboard keys 43
:extended keyword 605
extended strings 640
extended wildcards 298
externalize-scrap generic function 386,

387

F
fact 342
failing i-search prompt 62
.fasl-pathname variable 669
fasl-save-definitions variable 316
fasl-save-doc-strings variable 316
fasl-save-local-symbols variable

316, 318
fasl-save-local-symbols variable 46
ff-call function 610
:ffenv-name keyword 601
ff-load function 601
ff-lookup-entry function 612
field-info function 585
fields, variant 571
file-allocated-data-size function 305
file-allocated-resource-size function

305
file-create-date function 302
file-data-size function 305
file-info function 305
file-locked-p function 303
file-menu variable 97
:filename keyword 482, 502
filenames 279–312

definition 280
file-resource-size function 304
files

loading 291–292
MCL operations related to files 299–304

:files keyword 296
file-write-date function 302
fill-oval generic function 711
fill-polygon generic function 733
fill-rect generic function 709
fill-region generic function 726
fill-round-rect generic function 714
finalization

See termination.
find-clicked-subview generic function

140
find-dialog-item generic function 248
find-edit-menu generic function 396
find-mactype function 584
find-menu function 96
find-menu-item generic function 106
find-named-dialog-items (See view-

named, find-named-sibling)
find-named-sibling generic function 138,

187
find-record-descriptor function 584
find-view-containing-point generic

function 148
find-window function 160
fixnump function 637
fixnums 636
:float keyword 608
floating windows 180

creating instances 180
definition 128, 180
instantiation 180
number visible 181

floating-point data type 637
flush-volume function 308
focused dialog item 201
focused view 133, 134
focusing, definition of 126
focus-view function 133
focus-view generic function 134
font codes

for current GrafPort 85
for current GrafPort, set 85
merge 86
set 86

:font keyword 459
font neighbor rule 472
Font specifications, buffer 472
font-codes function 80
font-codes-info function 81
font-codes-line-height function 82
760 Macintosh Common Lisp Reference

font-codes-string-width function 82
font-info function 78
font-list variable 88
fonts 74–88

alist of style keywords and numbers 88
ascent 78, 81
cell table dialog item 222
cell, table dialog item 223
check for existence 76
color specification 75
default, in Fred windows 39
default, in Listener windows 667
default, in mini-buffers 39
descent 78, 81
font codes 75–76

MCL functions related to font codes
80–87

font specification from font codes 76
font specifications 74–75

definition 74
MCL functions related to font

specifications 76–80
Fred 472
leading 78, 81
list of all installed fonts 88
name 74
set insertion font 500
size 74
style 74
transfer mode 74, 75
widmax 78, 81
width of string 77
window 165
windows

default 166
font-spec function 76
:force-boundp-checks keyword 665
force-output function 454
foreground-event-ticks variable 378
foreground-sleep-ticks variable 377
foreign functions 597–615
:fork keyword 303
Forward Delete keystroke (extended keyboard)

55
:frame keyword 169, 190, 196, 262, 480
frame-arc generic function 718
frame-oval generic function 710
frame-polygon generic function 732
frame-rect generic function 706
frame-region generic function 725

frame-round-rect generic function 713
Fred

Apple Extended Keyboard keys 43
background color 499
chunk size 491
Clipboard 36
context lines 40
dead keys 43
debugging commands 317–320
default font 39
deleting 55
Escape key as Meta modifier 42
fonts 36, 472
foreground color 499
Fred Commands menu item 65
Fred dialog items 454–455
Fred windows 454
horizontal scroll 497
horizontal scroll, set 498
kill ring 36
line wrap checking 504
Lisp operations 57
Macintosh editing features 41
margin return 503
margin set 504
multiple fonts 36
pane-splitters 34
programming 451–527
set package of windows 36–38
spaces per tab return 504
styles, retaining 40
using Macintosh Option character set 43
window information, saving 40
windows 128
yank, rotating 52

Fred commands
add mode line 57
capitalize word 54
comment column, set 58
comment insert or align 58
copy current region 56
current editor window 45, 319
defining 516
delete 55–56

character left 55
character right 55
current region 56
horizontal whitespace 56
s-expression left 55
s-expression right 55
Index 761

to end of current line 55
to next non-whitespace character 56
whitespace 56
word left 55
word right 55

documentation of function 46, 319
evaluate current s-expression 57
evaluate or compile current sexp 57
evaluate or compile top-level s-expression

57
examine code definition for symbol 45, 318
files 59
function documentation 319
help 45, 65
help commands 45–46
Help window 318
incremental search 61–64

commands 64
insert 52–54

current kill ring string into buffer 52
double quotation mark 53
line 52
next kill ring string into buffer 52
parentheses 53
quoted character 53
sharp-sign comment 53

inspect current s-expression 46, 319
kill comment 56, 58
Lisp operations 57–58
lowercase word 53
macroexpand current s-expression 57, 319
macroexpand current s-expression

repeatedly 319
move 46–48

back character 47
backward s-expression 47
backward word 47
beginning of buffer 48
beginning of current top-level s-

expression 47
beginning of line 47
end of buffer 48
end of current top-level s-expression

47
end of line 47
forward char 47
forward s-expression 47
forward word 47
line down 47
line up 47

next screen 48
over next close parenthesis 48
previous screen 47
to beginning of current s-expression 48
to end of current s-expression 48
to mark position 54
to next list 48
to previous list 48

numeric arguments 61
print argument list of function 46, 318
push mark onto ring 54
read current s-expression 57, 319
reindent

current line 52
current s-expression 52
for readability 48

save window to file 59
save window to new file 59
select 49–51

backward character 49
backward s-expression 49
backward word 49
beginning of line 50
current s-expression 50
current top-level s-expression 50
end of line 50
entire buffer 50
forward char 49
forward s-expression 50
forward word 49
line down 50
line up 50
next screen 51
previous screen 51
text file and open window 59

split line 52
terminate a command 64
transpose

point and mark 51, 54
s-expressions 54
words 54

undo 60
windows 59
yank 52

Fred Commands menu item 65
Fred dialog item 455
Fred dialog items

creating instances 479
fred function 487
Fred windows
762 Macintosh Common Lisp Reference

creating instances 481, 487
fred-autoscroll-h-p function 491
fred-autoscroll-v-p function 491
fred-blink-position generic function 493
fred-buffer function 187
fred-buffer generic function 459, 489
fred-chunk-size generic function 458, 491
fred-copy-styles-p generic function 495
fred-default-font-spec 472
fred-default-font-spec variable 39,

166, 472
fred-dialog-item class 479
fred-display-start-mark generic

function 188, 492
fred-history-length variable 478
fred-hpos generic function 188, 497
fred-hscroll generic function 497
fred-item 453
fred-item class 478
fred-item generic function 488
fred-justification generic function 490
fred-keystroke-hook variable 521
fred-last-command generic function 522
fred-line-right-p generic function 489
fred-line-vpos generic function 188, 497
fred-margin generic function 503
fred-mixin class 453, 478
fred-package generic function 503
fred-point-position generic function 496
fred-special-indent-alist variable

495
fred-tabcount generic function 504
fred-update generic function 188, 454, 493
fred-vpos generic function 188, 497
fred-window 453
fred-window class 481
fred-window generic function 481, 484
fred-word-wrap-p generic function 490
fred-wrap-p generic function 504
front-listener-terminal-io subclass 413
front-window function 158
fsspec type 406
:full-long keyword 608
full-pathname function 297
funcallable-standard-class class 620
functions

documentation 46, 319
printing argument list 46, 318

G
garbage collection 650–654

ephemeral 650
gccounts function 655
gc-event-check-enabled-p function 654
gctime function 655
generic functions

associated with a method 628
method exists, checking 631
methods 627
methods that run when a generic function

is invoked 628
on given specializer 627

generic-function class 620
generic-function-methods generic

function 627
%gen-trap function 592
gestalt function 672
Get Info menu item 353
get-back-color generic function 499
%get-byte function 535
%get-cstring function 539
%get-double-float function 540
get-fore-color generic function 499
get-fpu-mode function 638
get-internal-scrap generic function 384,

386
%get-long function 537
get-next-event function 375
get-next-queued-form function 390
%get-ostype function 539
get-picture generic function 729
get-pixel generic function 734
get-polygon generic function 731
%get-ptr function 538
get-record-field function 583
get-scrap function 384, 386
%get-signed-byte function 535
%get-signed-long function 537
%get-signed-word function 536
%get-single-float function 540
%get-string function 539
get-string-from-user function 242
%get-unsigned-byte function 535
%get-unsigned-long function 538
%get-unsigned-word function 536
%get-word function 536
global point

from local point 733
Index 763

to local point 734
global-to-local generic function 734
Goodies from Digitool folder on the MCL 4.0

CD 741
Goodies from MCL Friends folder on the MCL

4.0 CD 742
GrafPort 688
GrafPort origin 146, 147
grafport-font-codes function 85
GrafPorts 688
grafport-write-string macro 78
graphics 688
gray-color variable 256
gray-pattern variable 89
green-color variable 256
grow-box-p generic function 490
_GrowWindow trap 368

H
handle

dialog item 190
locked, checking 586

:handle keyword 569
handle-locked-p function 586
handlep function 547
handler-case 187
Help

Fred 318
help

Fred 45
Fred commands 65
Listener commands 66

Help keystroke 349
help-output variable 46, 325
help-spec generic function 106
:help-spec keyword 101, 112, 123, 131, 132,

190, 228, 230, 241, 483
hfs device 307
hfs-volume-p function 307
%hget-byte function 536
%hget-double-float function 540
%hget-long function 538
%hget-ptr function 539
%hget-signed-byte function 536
hget-signed-long function 538
%hget-signed-word function 537
%hget-single-float function 540
%hget-unsigned-long function 538

%hget-word function 537
hide-windoids-on-suspend variable

671
hierarchy 633
Highlights folder on the MCL 4.0 CD 740
highlight-table-cell generic function

220
:hilite keyword 169, 262
:history-length keyword 478, 483
:host keyword 286
%hput-byte function 541
%hput-double-float function 544
%hput-long function 542
%hput-ptr function 543
%hput-single-float function 544
%hput-word function 542
href macro 576, 578
h-scroller generic function 488
h-scroll-fraction generic function 491
HyperCard, communicating with 410

I
i-beam-cursor variable 177, 383
idle variable 375
idle variable

defined 377
idle-sleep-ticks variable 377
:if-does-not-exist keyword 299
:if-exists keyword 300, 301, 303
ignore (Common Lisp declaration) 667
ignore-errors function 187
ignore-if-unused declaration 667
immediate objects 633
implementation 618–672
%incf-ptr macro 548
Include Close Box 275
:include-invisibles keyword 157, 158,

159
:include-windoids keyword 158, 159
%inc-ptr function 548
incremental search 61–64

commands 64
index-to-cell generic function 236
:inhibit-event-polling keyword 665
:inhibit-register-allocation

keyword 664
:inhibit-safety-checking keyword 664
initialize-instance generic function
764 Macintosh Common Lisp Reference

button-dialog-item 203
check-box-dialog-item 212
default-button-dialog-item 204
dialog-item 189
editable-text-dialog-item 207
fred-dialog-item 479
fred-window 481
input-stream 439
menu 100
menu-item 111
output-stream 439
pop-up-menu 227
radio-button-dialog-item 214
scroll-bar-dialog-item 229
sequence-dialog-item 235
simple-view 130
static-text-dialog-item 206
table-dialog-item 218
view 131
windoid 180
window 154
window-menu-item 122

:initial-string keyword 242
:inline-self-calls keyword 665
in-package statement 37
input-file-script variable 643
input-stream class 438
inset-rect function 702
inset-region function 722
Inspect (command on Tools menu) 349
inspect function 326, 350
inspecting current s-expression 319
Inspector 348–351

disassembly 350
Help 349
list all Lisp objects that have been inspected

349
list devices 349
list-all-packages function (Common

Lisp) 349
logical hosts 349
MCL functions related to the Inspector

350–351
options 349
package variable (Common Lisp) 349
readtable variable (Common Lisp)

349
Record Types 349

inspector-disassembly variable 350
install-appleevent-handler function

407
install-queued-reply-handler function

408
install-view-in-window 201
install-view-in-window generic function

135, 187, 190, 198, 199, 365
instances

copy instance 630
instantiation

button dialog items 203
checkbox dialog items 212
default button dialog items 204
dialog items 189
editable-text dialog items 207
floating windows 180
Fred dialog items 479
Fred windows 481
menu items 111
menus 100
pop-up menus 227
radio-button dialog items 214
scroll-bar dialog items 229
sequence dialog items 235
simple views 130
static-text dialog items 206
table dialog items 218
views 131
window menu items 122
windows 154

Interface Toolkit 263–278
add dialog items 275
edit dialog items 276
loading 264

Interface Tools folder on the MCL 4.0 CD 747
internalize-scrap generic function 386,

387
intersect-rect function 703
intersect-region function 722
%int-to-ptr function 549
invalidate-corners generic function 141
invalidate-region generic function 142
invalidate-view generic function 141
_InvalRect trap 371
_InvalRgn trap 141
_InvalRgn trap
invert-arc generic function 717
invert-oval generic function 711
invert-polygon generic function 733
invert-rect generic function 708
invert-region generic function 725
Index 765

invert-round-rect generic function 714
i-search prompt 62
i-search reverse prompt 62
:item-display keyword 227
:item-key keyword 119, 261
:item-mark 119
:item-mark keyword 261
item-named (See view-named)
:item-title keyword 119, 261

J
:justification keyword 481
:justificationkeyword 484

K
keyboard equivalent

defining 516
keyboard equivalents 319

Command-Meta-click 46
Command-Option-click 45
Control-A 47
Control-B 47
Control-D 55
Control-E 47
Control-Equal sign 45, 319
Control-F 47
Control-G 64
Control-K 55
Control–Left Arrow 47
Control-M 57
Control-Meta-A 47
Control-Meta-B 47
Control-Meta–close parenthesis 48
Control-Meta-Delete 55
Control-Meta-E 47
Control-Meta-F 47
Control-Meta-H 50
Control-Meta-K 55
Control-Meta-L 59
Control-Meta-N 48
Control-Meta-number 61
Control-Meta-O 52
Control-Meta–open parenthesis 48
Control-Meta-P 48
Control-Meta-Q 52
Control-Meta-semicolon 56, 58
Control-Meta-Shift–Down Arrow 51

Control-Meta-Shift-M 57
Control-Meta-Shift-N 51
Control-Meta-Shift-P 51
Control-Meta–Shift–Up Arrow 51
Control-Meta–Space bar 50
Control-Meta-T 54
Control-Meta-underscore 60
Control-N 47
Control-number 61
Control-O 52
Control-P 47
Control-Q 53, 64
Control–question mark 45, 318
Control-R 64
Control-Return 52
Control-Right Arrow key 47
Control-S 64
Control-S Control-W 64
Control-S Control-Y 64
Control-S Meta-W 64
Control-Shift-A 50
Control-Shift-E 50
Control-Shift–Left Arrow 49
Control-Shift-N 50
Control-Shift-P 50
Control-Shift–Right Arrow 50
Control-Shift-V 51
Control–Space bar 54
Control-Tab 48
Control-U 61
Control-underscore 60
Control-V 48
Control-W 52, 56, 64
Control-X Control-A 46, 318
Control-X Control-C 57
Control-X Control-D 46, 319
Control-X Control-E 57
Control-X Control-F (See Control-X

Control-V)
Control-X Control-I 349
Control-X Control-M 57
Control-X Control-R 57
Control-X Control-S 59
Control-X Control–Space bar 56
Control-X Control-V 59
Control-X Control-W 59
Control-X Control-X 51, 54
Control-X H 50
Control-X semicolon 58
Control-X U 60
766 Macintosh Common Lisp Reference

Control-Y 52, 64
Delete 55, 64
Enter 57
Forward Delete (extended key-board) 55
Help 349
Left Arrow 47
Meta-B 47
Meta-backslash 56
Meta-C 54
Meta–close parenthesis 48
Meta-D 55
Meta-Delete 55
Meta–double quotation mark 53
Meta-F 47
Meta–greater-than 48
Meta-L 53
Meta–left angle bracket 48
Meta-Left Arrow 47
Meta–left parenthesis 53
Meta–less than 48
Meta-M 48
Meta-number 61
Meta–number sign 53
Meta–open parenthesis 53
Meta-period 45, 318
Meta-point 45, 318
Meta–right angle bracket 48
Meta–Right Arrow 47
Meta-semicolon 58
Meta–sharp sign 53
Meta-Shift–Left Arrow 49
Meta-Shift–Right Arrow 49
Meta-Shift-V 51
Meta–Space bar 56
Meta-T 54
Meta-V 47
Meta-W 52, 56
Meta-Y 52
Right Arrow 47
Shift–Down Arrow 50
Shift–Left Arrow 49
Shift–Page Down 51
Shift–Page Up 51
Shift–Right Arrow 49
Shift–Up Arrow 50
Tab 52

key-handler-idle generic function 366
key-handler-list generic function 364, 365
key-handler-mixin class 208, 364
key-handler-p generic function 208, 366

keys, extended Apple Keyboard, in Fred 43
keystroke-code function 520
keystroke-function generic function 521
keystroke-name function 520
kill ring 456, 512

data structure 36
definition 35

killed-strings variable 36
kill-picture function 728, 729, 730
kill-polygon function 730, 731

L
:language keyword 603
last-command variable 509, 522
leading 78, 81
Left Arrow keystroke 47
:left keyword 162
:libraries keyword 601
Library folder on the MCL 4.0 CD 747
:library-entry-names keyword 601
light-blue-color variable 256
light-gray-color variable 256
light-gray-pattern variable 89
line generic function 700
:line-right-p keyword 481, 484
lines-in-buffer function 463
line-to generic function 700
Lisp operations 57
lisp-cleanup-functions variable 680
lisp-development-system class 394
lisp-menu variable 97
.lisp-pathname variable 291
:lisp-ref keyword 605
lisp-startup-functions variable 681
List Definitions menu item 66
list-all-packages function (Common

Lisp) 349
Listener 667–668

Listener commands menu item 66
variables associated with 667–668

Listener commands
Help on Listener commands 66

Listener Commands menu item 66
listener-comtab variable 524
listener-default-font-spec

variable 166, 667
listener-history-length variable 478
listener-window-position variable
Index 767

667
listener-window-size variable 668
literal characters 53
load-all-patches function 669
loading-file-source-file variable

671
load-patches function 668
local macro 336
local point

from global point 734
to global point 733

local-to-global generic function 733
lock-file function 303
lock-owner function 429
locks 428
logical directory names 311–312
logical hosts 281, 284–285
logical-directory-alist variable 311
logical-pathname-alist obsolete

variable (See *logical-
directory-alist*)

:long keyword 590, 591, 593, 605, 608, 611
long-method-combination class 619
lsh function 638

M
mac-default-directory function 293
mac-directory-namestring function 295
mac-file-creator function 304
:mac-file-creator keyword 300
mac-file-namestring function 295
mac-file-type function 304
:mac-file-type keyword 300, 309
machine-owner function 671
Macintosh Common Lisp

4.0 CD-ROM
Additional MCL Source Code folder

741
Contents/Index folder 742
Developer Essentials folder 742
Examples folder 743
Goodies from Digitool folder 741
Goodies from MCL Friends folder 742
Highlights folder 740
Interface Tools folder 747
Library folder 747
Mail Archives folder 742
MCL 3.1 folder 740

MCL 4.0 "Demo Version" folder 740
MCL 4.0 application 743
MCL 4.0 folder 740
MCL 4.0/3.1 Documentation folder

741
MCL Floppy Disks folder 741
MCL Help and MCL Help-Map.fasl

743
On Location Indexes folder 743
pmcl-compiler 748
pmcl-kernel 748
pmcl-library 748
ThreadsLib 748
User Contributed Code folder 742

customizing for applications 674–681
implementation notes 618–672
syntax 25–27
version 3.0

changes in 397
AppleEvents 400

Macintosh data structures 530
Macintosh editing features 41
Macintosh Operating System 126, 530

MCL functions for strings, pointers and
handles 545–549

Macintosh Programmers’ Workshop interfaces
530

Macintosh Programmers’ Workshop,
communicating with 410

Macintosh Toolbox 530
calling Macintosh Common Lisp 613

mac-namestring function 294
macptrp function 546
macptrs 531
macro dispatch characters, inspect 349
macroexpand function 319
macroexpand-1 function 319
macroexpanding current s-expression 319
macroexpanding current s-expressions

repeatedly 319
mactype

definition (a record field type) 555
mactypes variable 584
Mail Archives folder on the MCL 4.0 CD 742
make-bitmap function 726
make-buffer function 458
make-color function 251
make-comtab function 524
make-dialog-item function 191
make-instance generic function
768 Macintosh Common Lisp Reference

menu 100
menu-item 111
simple-view 130
view 131
window 154
window-menu-item 122

make-lock function 428
make-mark function 457
make-package-use-defaults variable

648
make-pathname function 286
make-point function 72
make-process function 414
make-process-queue function 430
make-record function 533
make-record macro 575
make-stack-group function 433
make-terminable-macptr function 660
map

point 735
polygon 737
rectangle 736
region 736

map-point function 735
map-polygon function 737
map-rect function 736
map-region function 736
map-subviews generic function 137
map-windows function 159
mark-backward-p function 458
markp (See buffer-mark-p)
:max keyword 229
maybe-default-stream-reader macro

444
maybe-default-stream-writer macro

444
MCL 3.1 folder on the MCL 4.0 CD 740
MCL 4.0 "Demo Version" folder on the MCL 4.0

CD 740
MCL 4.0 folder on the MCL 4.0 CD 740
MCL 4.0/3.1 Documentation folder on the

MCL 4.0 CD 741
MCL Floppy Disks folder on the MCL 4.0 CD

741
MCL Help and MCL help-Map.fasl on the MCL

4.0 CD 743
memory management 532–551, 650–660

allocation 532
Macintosh Memory Manager, bypassing

533

MCL functions for accessing memory 535–
544

menu
Apple 124
Apple, can never be removed 95
colors 261

menu bar 94–99
class 94
color 261
colors 98, 99
definition 94
finding menu title 96
flickering, prevention of 109
freezing 109
installing new set of menus 95
listing currently installed menus 95
redrawing 110
startup list 96
updating 123

menu class 100
menu handle 108
menu item

colors 261
menu items 110–119

action 113
actions 110
active window menu items 120
adding to menu 104
Apropos 351
Balloon Help 106
check mark character 116
check mark character, setting 116
colors 118, 119
command key equivalent 115
command key equivalent, setting 115
creating instances 111
disabling 114
enabled, checking if 114
enabling 114
finding in menu 106
font style 116
font style, setting 117
Fred Commands 65
Get Info 353
in active window 122
List Definitions 66
Listener Commands 66
listing 105
performing action 113
Processes 355
Index 769

removing from menu 105
retitling 114
Search Files 67
setting action 113
setting check mark character 116
setting command key equivalent 115
setting font style 117
title 113
Trace 339
updating 117, 123
window menu items 120

:menu-background keyword 107, 261
menubar class 94
menubar function 95
:menubar keyword 99, 261
menubar variable 95
menubar-bottom variable 89
menubar-frozen variable 109
:menu-colors 228
:menu-colors keyword 100
menu-deinstall generic function 102
menu-disable generic function 103
menu-element class 94
menu-enable generic function 103
menu-enabled-p generic function 103
menu-handle generic function 108
menu-id generic function 109
menu-id-object-alist variable 109
menu-install generic function 94, 102
menu-installed-p generic function 103
menu-item class 111
menu-item-action generic function 113
:menu-item-action keyword 112, 122
menu-item-action-function generic

function 110, 113
:menu-item-checked keyword 112, 123
menu-item-check-mark generic function

116
:menu-item-colors keyword 112, 122
menu-item-disable generic function 114
menu-item-enable generic function 114
menu-item-enabled-p generic function 114
menu-items generic function 105
:menu-items keyword 100, 227
menu-item-style generic function 116
menu-item-title generic function 113
:menu-item-title keyword 111, 122
menu-item-update generic function 117, 123
menu-item-update-function generic

function 117

menus 91–124
advanced menu features 108–110
Balloon Help 106
built-in 96–98
colors 94, 106, 107, 108
creating instances 100
definition 100
deinstalling 102
dimming 103
disabling 103
enabled, checking if 103
enabling 103
font style 104
freezing menu bar 109
handle to menu record 108
hierarchical 93
identification number association list 109
installation, checking for 103
installing 102
MCL forms relating to menu elements 104–

108
MCL forms relating to menus 100–104
removing from menu bar 102
restoring 103
retitling 101
title 101, 447
turning off 103
turning on 103
unique numeric identification 109
update function 104
updating 108, 123

menus (See also menu items, window menu
items)

menu-style generic function 104
menu-title generic function 101, 447
:menu-title keyword 100, 107, 261
menu-update generic function 108, 123
menu-update-function generic function

104
merge-font-codes function 86
message-dialog function 240
Meta key 42
Meta modifier 42
Meta-" 53
Meta-B keystroke 47
Meta-backslash keystroke 56
Meta-C keystroke 54
Meta–close parenthesis keystroke 48
Meta-D keystroke 55
Meta-Delete keystroke 55
770 Macintosh Common Lisp Reference

Meta–double quotation mark 53
Meta-F keystroke 47
Meta–greater than keystroke 48
Meta-L keystroke 53
Meta–left angle bracket keystroke 48
Meta-Left Arrow keystroke 47
Meta–left parenthesis keystroke 53
Meta–less than keystroke 48
Meta-M keystroke 48
Meta-number keystroke 61
Meta–number sign keystroke 53
metaobject class 619
Metaobject Protocol 619–632

introspective MOP functions 621
MCL functions related to the MOP 622–632
metaobject classes 619–621

Meta–open parenthesis keystroke 53
Meta-period keystroke 45, 318
Meta-point keystroke 45, 318
Meta–right angle bracket keystroke 48
Meta–Right Arrow keystroke 47
Meta-semicolon keystroke 58
Meta–sharp sign keystroke 53
Meta-Shift–Left Arrow keystroke 49
Meta-Shift–Right Arrow keystroke 49
Meta-Shift-V keystroke 51
Meta–Space bar keystroke 56
Meta-T keystroke 54
Meta-V keystroke 47
Meta-W keystroke 52, 56
Meta-Y keystroke 52
method class 619
:method keyword 341, 344, 346, 347, 348
method-combination class 619
method-exists-p function 631
method-function generic function 628
method-generic-function generic

function 628
method-name generic function 628
method-qualifiers generic function 629
methods

for a generic function 627
generic function associated with method

628
generic functions run by method 628
name 628
on given specializer 626
qualifiers 629
return method for generic function 631
specializers 629

specializing on class 353
method-specializers generic function 629
:min keyword 229
minibuffer 35
mini-buffer class 514
mini-buffer-font-spec variable 39
mini-buffer-help-output variable 46,

318
mini-buffers

default font 39
minibuffers

clear 39
in Fred 514

mini-buffer-string generic function 516
mini-buffer-update generic function 515
modal dialog 237
modal-dialog generic function 246
modal-dialog-on-top variable 248
modeless dialog 237
:modeless keyword 242, 244
module-file-alist variable 292
modules variable 292
module-search-path variable 292
MOP 619
most-positive-fixnum constant 70
mouse

button pressed, checking 373
create mouse-sensitive items 381
double clicks 374
double clicks, checking 373
position 372

mouse-down-p function 373
mouse-sensitive items

create 381
mouse-view variable 133
move generic function 700
move-mark function 458
move-to generic function 699
multi-click-count variable 373

N
:name keyword 287
namestrings

definition 280
parsing 288

new
application methods 397
features
Index 771

Macintosh Common Lisp 3.0 355
new-compiler-policy function 663
_newCWindow trap 155
_NewPtr trap 556
_NewPtr trap 533
new-region function 719
_NewRgn trap 143
_newWindow trap 155
next-screen-context-lines function 41
next-screen-context-lines variable

41, 47, 48
defined 40

nickname 147, 190
:no-check-arg keyword 607
:no-error keyword 297
no-queued-reply-handler generic

function 408, 409
Note icon 241
:no-text keyword 241
:novalue keyword 591, 593, 608, 612
%null-ptr macro 550
%null-ptr-p function 550
numbers 636–637
number-sign dollar-sign reader macro 557
number-sign underbar reader macro 556
numeric arguments 636

O
offset-polygon function 731
offset-rect function 702
offset-region function 721
:ok-text keyword 240, 242
On Location Indexes on the MCL 4.0 CD 743
OPEN (Common Lisp function) 300
open-application-document generic

function 402
open-application-handler generic

function 400
:open-code-inline keyword 664
open-documents-handler generic function

402
open-file-streams variable 304
open-region generic function 720
optimize declarations 663
option character set 53
Option character set, in Fred 43

dead keys 43
Option-command-period keystroke 412

Option-D 285
option-key-p function 374
orange-color variable 256
origin generic function 691
:origin keyword 572
ostype

definition 594
:ostype keyword 590
output-stream class 439
oval

erase 710
fill 711
frame 710
invert pixels 711
paint 710

:owner keyword 111

P
package

inspect current package 349
package variable (Common Lisp) 349
packages 36–38, 648–649

set 37, 38
:page-size keyword 229
paint-arc generic function 716
paint-oval generic function 710
paint-polygon generic function 732
paint-rect generic function 707
paint-region generic function 725
paint-round-rect generic function 713
:pane-splitter keyword 229, 488
pane-splitters

in Fred 34
:parent (See color-p)
parentheses, inserting 53
part-color generic function 259

dialog-item 196
menu 107
menubar 98
menu-item 118
table-dialog-item 223
window 168

part-color-list generic function 260
dialog-item 197
MENU 108
menubar 99
menu-item 119
window 169
772 Macintosh Common Lisp Reference

:part-color-list keyword 187, 190, 196
Pascal language

calling Macintosh Common Lisp 613
calling sequence 550
null pointer 549
Pascal types and MCL equivalents 565
true and false 594
VAR arguments 549, 586

pascal-full-longs variable 671
Paste command 36
paste generic function 121, 178, 211, 507
paste-with-styles variable 36, 40
patches 668–669
%path-from-fsspec function 406
pathnames 282–310

creating 285
definition 280
escape character 289
MCL functions related to pathnames 285–

287
namestring conversion 282
numeric arguments 281
parsing 288–289
printing 281
quoting special character 289
reading 281
set pathname 308–310
sharp-sign syntax 281
specification 285

pathname-translations-pathname
variable 291

pen-hide generic function 694
pen-mode generic function 697
pen-mode keywords 88
pen-modes variable 88
pen-normal generic function 699
pen-pattern generic function 696
pen-position generic function 695
pen-show generic function 694
pen-shown-p generic function 695
pen-size generic function 695
pen-state generic function 699
pictures

draw 729
get 729
kill 730
start 728
stop and return 729

pink-color variable 256
pixel

get value 734
pixels-per-inch-x variable 89
pixels-per-inch-y variable 89
pmcl-compiler on the MCL 4.0 CD 748
pmcl-kernel on the MCL 4.0 CD 748
pmcl-library on the MCL 4.0 CD 748
point function 72
pointer 143
:pointer keyword 569
pointer-char-length function 644
pointerp function 546
pointers

into a buffer 455
point-h function 71
point-in-click-region-p generic

function 149
point-in-rect-p function 704
point-in-region-p function 723
points 70–74, 689

adding points 73
compare with EQL 70
constructing from coordinates 72
definition 70
encoded form 70
find view containing 148
global point to local point 734
horizontal coordinate of 71
local point to global point 733
map 735
relative placement 72
scale point 734
string representation of 71
subtracting points 73
vertical coordinate of 71

points-to-rect function 705
point-string function 71
point-to-angle function 705
point-to-cell generic function 226
point-v function 71
polygons

erase 732
fill 733
frame 732
get 731
invert 733
kill 731
map 737
move 731
paint 732
start 730
Index 773

stop and return 731
pop-up menus 227
pop-up-menu class 227
PortRect 689
:position keyword 240, 241, 242, 255
post-egc-hook-enabled-p function 660
pref macro 577
preferences-file-name variable 671
press-button generic function 203
previous-stack-group function 435
print-abbreviate-quote variable 650
print-application-documents generic

function 403
print-call-history function 325
print-circle variable 334
print-db-stack backtrace macro 356
print-documents-handler generic

function 403
printing 506
printing variables 649
print-record function 585
print-simple-bit-vector variable 649
print-simple-vector variable 649
print-string-length

 649
print-structure variable 649
process interrupt function 424
process-abort function 423
process-active-p function 420
process-allow-schedule function 427
process-arrest-reasons function 418
process-background-p function 421
process-block function 425, 426
process-block-with-timeout function

427
process-creation-time function 422
process-dequeue function 432
process-disable function 419
process-disable-arrest-reason

function 420
process-disable-run-reason function

419
process-enable function 419
process-enable-arrest-reason function

420
process-enable-run-reason function 419
process-enqueue function 430
process-enqueue-with-timeout function

431
Processes

initial 412
Listener 412
run and arrest reason functions 418
Standin 412

processes 412
attribute functions 415
creating 414
locks 428
priority 413
scheduler 424
stack groups 433
starting and stopping 422

Processes menu item 355
process-flush function 423
process-initial-form function 416
process-initial-stack-group function

416
process-kill function 424
process-last-run-time function 421
process-lock function 428
process-name function 415
process-preset function 422
process-priority function 417
process-quantum-remaining function 418
process-queue-locker function 433
process-reset function 422
process-reset-and-enable function 423
process-run-function function 414
process-run-reasons function 418
process-simple-p function 421
process-stack-group function 416
process-total-run-time function 421
process-unblock function 425, 427
process-unlock function 429
process-wait function 425
process-wait-argument-list function

417
process-wait-function function 417
process-wait-with-timeout function 426
process-warm-boot-action function

421
process-whostate function 421
:procid keyword 156, 483
:prompt keyword 255, 309
provide function 292
:pstring keyword 606
:ptr keyword 590, 591, 593, 605, 608, 611
%ptr-to-int function 549
purple-color variable 256
pushed button 215
774 Macintosh Common Lisp Reference

pushed-radio-button generic function 215
%put-byte function 541
%put-cstring function 543
%put-double-float function 544
%put-full-long function 542
%put-long function 542
%put-ostype function 544
%put-ptr function 542
put-scrap function 385
%put-single-float function 544
%put-string function 543
%put-word function 541

Q
queued-reply-handler generic function

408
QuickDraw 133, 134, 178, 201, 688

Color QuickDraw command set 251
QuickDraw graphics 687–737
quit-application-handler generic

function 401
quoted characters 53

R
radio-button dialog items 213–215

creating instances 214
radio-button-cluster generic function

214
radio-button-dialog-item class 188, 214
radio-button-push generic function 215
radio-button-pushed-p generic function

215
:radio-button-pushed-p keyword 214
radio-button-unpush generic function 215
raref macro 581
rarset macro 581
reader macros 636
reading current s-expression 319
:read-only keyword 459
readtable

inspect current 349
readtable variable (Common Lisp) 349
real-color-equal 250
real-color-equal function 253
real-font function 76
record

menu record handle 108

record field
definition 568
structure 568

record field type (mactype) 555
record field types 584
record fieldtypes 565–585
record type 567
record types 565–585

define 568
find 584
inspect 349
listing record field types 584
listing record types 583

record-fields function 585
record-info function 585
record-length macro 584
records 567–586

copying 582
create efficient record 572
create record with indefinite extent 575
create temporary record 572
define record type 568
definition 555, 567
dispose of 575
examples 564
find fields 585
find info about all fields 585
find info about one field 585
find length 584
find record field type 584
find record type 584
listing record field types 584
listing record types 583
printing values of fields 585
record field, definition 568
return contents of fields 576, 577, 578
returning value of field 583
setting value of field 583
variant fields 571

record-source-file variable 45, 316,
318, 352

record-types variable 583
rectangle record

storage 690
rectangles

angle number 705
empty, checking 706
equality between rectangles 706
erase 708
fill with pattern 709
Index 775

frame 706
intersection 703
invert pixels 708
map 736
move 702
paint 707
point in rectangle, checking 704
points defining rectangle 705
shrink or expand 702
union 704

rect-in-region-p function 724
red-color variable 256
redraw-cell generic function 219
regions

allocate new region 719
close region record 721
copy or create 720
difference 723
dispose 719
empty 720
empty, checking 724
equality between regions, checking 724
erase 725
exclusive-or of two regions 723
fill 726
frame 725
intersection 722
invert pixels 725
map 736
move 721
open region record 720
paint 725
point in region, checking 723
rectangle in region, checking 724
rectangle, set to 720
shrink or expand 722
union 722

register trap call 588
register-trap macro 591
reindex-interfaces function 558
remove-dialog-items (See remove-

subviews)
remove-from-shared-library-search-

path function 561
remove-key-handler generic function 365
remove-menu-items generic function 105
remove-scroller function 489
remove-self-from-dialog (obsolete

function) 199
remove-self-from-dialog (See remove-

view-from-window)
remove-subviews generic function 139, 187
remove-view-from-window generic

function 135, 136, 187, 199, 365
rename-file function 301
:replace keyword 602
require function 291
require-interface function 556
require-trap macro 557
require-trap-constant macro 558
require-type function 670
reset-process-queue function 433
:resolve-aliases keyword 296
restart-case 187
:return-block keyword 593, 611
return-from-modal-dialog macro 247
:reverse-args keyword 603
RGB record

returning color from 254
RGB records

binding to variable 255
returning 253

rgb-to-color function 254
Right Arrow keystroke 47
:right keyword 162
rlet

examples 564
rlet macro 572
room function 326
rotate-killed-strings function 513
rotating yank 52
rounded rectangles

erase 714
fill 714
frame 713
invert pixels 714
paint 713

rref macro
plus setf is rset 578

rset macro 578, 580
rref plus setf 580

S
same-buffer-p function 458
save-application function 630, 631, 677
save-copy-as generic function 121, 178
save-definitions variable 39, 316, 337
save-doc-strings variable 319
776 Macintosh Common Lisp Reference

save-doc-strings variable 317, 352
save-doc-strings variable 46
save-exit-functions variable 680
save-fred-window-positions

variable 40
save-local-symbols variable 46, 317,

318
save-position-on-window-close

variable 40
scale-point function 734
scheduler 424
scrap-handler class 386
scrap-handler-alist variable 385
scrap-state variable 385
screen drawing 688

first QuickDraw point 89
pen patterns 89
pen-mode keywords 88
pixels per inch 89
style encoding 88
width and height 89

screen-height variable 89
screen-width variable 89
script argument 642
script manager 642–643
scroll bars

adding 488
scroll-bar dialog items

creating instances 229
initial setting, set 232
length 230
length, set 230
maximum setting 230
maximum setting, set 230
minimum setting 231
minimum setting, set 231
page size 231
scroll box, existence, checking 233
scroll size 231
scrollee 232
setting 232
track thumb, existence, set 233
width 233
width, set 234

scroll-bar-changed generic function 234
scroll-bar-dialog-item class 228
scroll-bar-length generic function 230
scroll-bar-max generic function 230
scroll-bar-min generic function 231
scroll-bar-page-size generic function

231
scroll-bars

removing 489
scroll-bar-scrollee generic function 232
scroll-bar-scroll-size generic function

231
scroll-bar-setting generic function 232
scroll-bar-track-thumb-p generic

function 233
scroll-bar-width generic function 233
:scrollee keyword 229
scrolling 40
scrolling-fred-view 453
scrolling-fred-view class 484
scroll-position generic function 225
scroll-rect generic function 727
:scroll-size keyword 229
scroll-to-cell generic function 225
Search Files menu item 67
select entire buffer 50
select-all generic function 50, 121, 178,

211, 507
select-backtrace function 325
selected-cells generic function 225
selection, types allowed in tables 244
selection-range generic function 498
:selection-type keyword 218, 244
select-item-from-list function 244
se-part-color generic function

menu 107
sequence dialog items

creating instances 235
sequence-dialog-item class 188, 234
:sequence-order keyword 235
:sequence-wrap-length keyword 234, 235
set-allow-returns generic function 210,

480
set-allow-tabs generic function 211, 480
set-cell-font generic function 223
set-cell-size generic function 222
set-choose-file-default-directory

function 310
_SetClip trap 368
set-clip-region generic function 692
set-command-key generic function 115
set-current-compiler-policy function

666
set-current-file-compiler-policy

function 666
set-current-key-handler generic
Index 777

function 206, 365
set-cursor function 382
set-default-button generic function 205
set-dialog-item-action-function

generic function 193
set-dialog-item-font (See set-view-

font)
set-dialog-item-handle generic function

199
set-dialog-item-position (See lset-

view-position) 187
set-dialog-item-size (See set-view-

size)
set-dialog-item-text generic function

194, 206
set-empty-region function 720
set-event-ticks function 378
set-extended-string-font function 642
set-extended-string-script function

642
set-file-create-date function 302
set-file-write-date function 302
%setf-macptr function 532
set-fore-color generic function 257
set-fpu-mode function 639
set-fred-display-start-mark generic

function 492
set-fred-hscroll generic function 498
set-fred-last-command generic function

522
set-fred-margin generic function 504
set-fred-package generic function 503
set-gc-event-check-enabled-p function

654
set-grafport-font-codes function 85
set-internal-scrap generic function 385,

386
set-local macro 336
set-mac-default-directory function 293
set-mac-file-creator function 304
set-mac-file-type function 304
set-mark 457
set-menubar function 94, 95
set-menu-item-action-function

generic function 110, 113
set-menu-item-check-mark generic

function 116, 123
set-menu-item-style generic function

117, 123
set-menu-item-title generic function 114

set-menu-item-update-function
generic function 118

set-menu-title generic function 101
set-mini-buffer generic function 515
set-origin generic function 689, 691
set-part-color generic function 259

dialog-item 196
menubar 99
menu-item 119
table-dialog-item 223
window 169

set-pen-mode generic function 697
set-pen-pattern generic function 696
set-pen-size generic function 695
set-pen-state generic function 699
set-post-egc-hook-enabled-p function

659
set-record-field function 583
set-rect-region function 720
set-scroll-bar-length generic function

230
set-scroll-bar-max generic function 230
set-scroll-bar-min generic function 231
set-scroll-bar-scrollee generic

function 232
set-scroll-bar-setting generic function

232
set-scroll-bar-track-thumb-p generic

function 233
set-scroll-bar-width generic function

234
set-selection-range generic function 498
set-table-dimensions generic function

221
set-table-sequence generic function 236
:setting keyword 229
setup-undo generic function 511
setup-undo-with-args generic function

512
set-view-container generic function 135
set-view-font generic function 79, 166, 187,

195, 500
set-view-font-codes function 501
set-view-font-codes generic function 84,

167, 196
set-view-nick-name generic function 147
set-view-position generic function 24,

145, 161, 187, 188
set-view-scroll-position generic

function 147
778 Macintosh Common Lisp Reference

set-view-size generic function 146, 163,
187, 188, 194, 368

set-visible-dimensions generic function
222

set-window-filename generic function
502, 503

set-window-layer generic function 155, 172
set-window-package generic function 38
set-window-position (See set-view-

position)
set-window-size (See set-view-size)
set-window-title generic function 165
set-window-zoom-position generic

function 173, 174
set-window-zoom-size generic function

175
set-wptr-font-codes function 86
Shadow-Edge-Box dialog box 274
:shadow-edge-box keyword 156, 483
sharp sign comments 53
sharp-sign dollar-sign reader macro 557
sharp-sign underbar reader macro 556
Shift–Down Arrow keystroke 50
shift-key-p function 374
Shift–Left Arrow keystroke 49
Shift–Page Up keystroke 51
Shift–Right Arrow keystroke 49
Shift–Up Arrow keystroke 50
short-method-combination class 619
show-cursor-p variable 492
simple bit vectors, print readably 649
simple vectors, print readably 649
simple views

creating instances 130
definition 126

simple-view class 130
Single-Edge-Box dialog box 274
:single-edge-box keyword 156, 483
:size keyword 240, 241, 242
sleep function 426
slot definition objects

name 629
slot-definition-name generic function

629
source code

editing definition 352
SourceServer 684, 741

menu 685
setting up 684

specializer

generic functions with methods on
specializer 627

methods on specializer 626
specializer class 620
specializer-direct-generic-

functions generic function 627
specializer-direct-methods generic

function 626
:srcBic keyword 75
:srcCopy keyword 75
:srcOr keyword 75
:srcPatBic keyword 75
:SrcPatCopy keyword 75
:srcPatOr keyword 75
:srcPatXor keyword 75
:srcXor keyword 75
stack allocation 533
Stack Backtrace 334
stack groups 433
:stack keyword 609
stack trap call 587, 588
%stack-block macro 533
%stack-block vs rlet 533
stack-group-preset function 434
stack-group-resume function 434
stack-group-return function 434
stack-trap macro 590
standard-accessor-method class 619
standard-class class 620
standard-generic-function class 620
standard-method class 619
standard-method-combination class 619
standard-object class 619
standard-reader-method class 619
standard-writer-method class 619
start-picture generic function 728
start-polygon generic function 730
static-text dialog items 205–206

creating instances 206
static-text-dialog-item class 188, 205
:step keyword 342
step macro 338
stepper 337–338
step-print-length variable 338
step-print-level variable 338
Stop icon 241
store-conditional function 430
stream class 438
stream-abort generic function 449
stream-clear-input generic function 447
Index 779

stream-close generic function 449
stream-column generic function 445, 515
stream-current-listener function 413
stream-direction generic function 440
stream-eofp generic function 447
stream-force-output generic function 440
stream-fresh-line generic function 446
stream-line-length generic function 445
stream-listen generic function 447
stream-peek generic function 445
stream-reader generic function 443
streams 438–449

clear pending input from 447
close 449
close abnormally 449
current column 445
definition of class 438
end, check for 447
functionality 438
increase speed by buffering 440
line length 445
outputting character 440
print newline in 446
read further characters from 447
read next character 441
reopen after close 449
unread character from 441
write all pending output 440

stream-tyi generic function 441
stream-tyo generic function 440, 701
stream-untyi generic function 441
stream-writer generic function 442
stream-write-string generic function 446
%str-from-ptr-in-script function 644
string-compare-script variable 641
strings, print readably 649
string-width function 77
structure-class class 620
structured directories 295–298
structure-object class 619
structurep function 670
structures, print readably 649
structure-typep function 670
:style keyword 112, 123
Style vectors 473
style-alist variable 88
subtract-points function 73
subviews generic function 136
superclasses 633
symbol

documentatin for 352
symbol-value-in-process function 435
symbol-value-in-stack-group function

435
syntax 25–27

T
Tab keystroke 52
Table 10-1Compiler options 317
table dialog items 216–226

creating instances 218
definition 216

table-dialog-item class 188, 216, 217
table-dimensions generic function 221
:table-dimensions keyword 218
table-hscrollp generic function 226
:table-hscrollp keyword 218
:table-print-function keyword 218,

219, 220, 244
tables (See table dialog items)
table-sequence generic function 235
:table-sequence keyword 235
table-vscrollp generic function 226
:table-vscrollp keyword 218
tag values 633–636
tagged pointer 633
tail recursion 662
tan-color variable 256
target function 159
terminal-io variable 668
terminate 657
terminate generic function 657
terminate-when-unreachable function

657
terminating a command 64
termination 656–660
termination-function function 659
:test keyword 296
text

selecting 49
:text keyword 190, 196, 262, 480
:text-edit-sel-p keyword 481
ThreadsLib on the MCL 4.0 CD 748
throw-cancel macro 239
:thumb keyword 190, 196, 262
time macro 355
:title keyword 169
:title-bar keyword 169, 262
780 Macintosh Common Lisp Reference

Tool dialog box 274
:tool keyword 156, 483
tool-back-color variable 671
tool-line-color variable 672
ToolServer 747
tools-menu variable 98
:top keyword 162
top-inspect-form 350
top-inspect-form function 327
toplevel-function generic function 396
toplevel-loop function 387, 388
top-listener variable 413, 667
trace macro 341
Trace menu item 339
trace-bar-frequency variable 345
trace-level variable 344
trace-max-indent variable 344
trace-print-length variable 344
trace-print-level variable 344
trace-tab function 345
tracing 338–345

MCL functions associated with tracing
341–345

:track-thumb-p keyword 229, 485
transposition 54
trap call

register 588
stack 587, 588

:trap-modifier-bits keyword 590, 591
traps 555–585, 586–595

create named trap 562, 599
define behavior 562, 599
dispatch table 558
examples 564, 569
trap macro 558
trap word 558
update index files 556
updating interface index files 558

:trust-declarations keyword 664
turnkey dialogs 239
tyi (obsolete function) 450
tyo (obsolete function) 450
:type 287
:type keyword 287

U
unadvise macro 347
uncompile-function function 336

undo 509, 510
undo generic function 121, 178, 211, 507
undo-more generic function 121, 178, 211, 507
union-rect function 704
union-region function 722
unlock-file function 303
untrace macro 344
update-cursor function 382
:update-function keyword 101, 112, 123
Use Dialogs menu item 273
User Contributed Code folder on the MCL 4.0

CD 742
user-pick-color function 255
user-set-color function 672
uvector

definition 633
uvectorp function 635
uvectors 635

V
validate-corners generic function 142
validate-region generic function 143
validate-view generic function 142
_ValidRgn trap 142
_ValidRgn trap
variant fields 571
:version keyword 287
view

set position in container 24
view class 131
view-activate-event-handler generic

function 149, 187, 200, 363
view-click-event-handler generic

function 150, 188, 192, 193, 361, 369
view-container generic function 135, 187
:view-container keyword 131, 132, 189,

479, 482
view-contains-point-p generic function

148, 149
view-convert-coordinates-and-click

generic function 151
view-corners generic function 140
view-cursor generic function 177, 380
view-deactivate-event-handler

generic function 150, 187, 200, 363
view-default-font generic function 166
view-default-position generic function

145, 164
Index 781

view-default-size generic function 146,
164

dialog-item 201
view-draw-contents generic function 150,

151, 197, 370
view-focus-and-draw-contents generic

function 152, 193
view-font generic function 79, 165, 187, 188,

195, 499
:view-font keyword 131, 132, 155, 190, 479,

482
view-font-codes function 500
view-font-codes generic function 83, 167,

195
view-key-event-handler generic function

206, 362, 396
editable-text-dialog-item 207

view-mini-buffer generic function 487, 514
view-mouse-enter-event-handler

generic function 380, 381
view-mouse-leave-event-handler

generic function 380, 381
view-mouse-position generic function

188, 372
view-named generic function 138, 187
view-nick-name generic function 147, 187
:view-nick-name keyword 131, 132, 155,

190, 480, 482
view-position generic function 144, 161,

187, 188
:view-position keyword 131, 132, 154, 190,

479, 482
views

and dialog items 186
class hierarchy 128
click region, checking 149
container 135
container set 139
container, remove from 139
contains point, checking 148
creating instances 131
deactivate 149, 150
default position 145
default size 146
definition 125, 126, 127
focused 133, 134
font codes 83
font codes set 84
implementation 126
MCL expressions relating to views and

simple views 130–153
mouse clicks, checking 149
nickname 147
nickname set 147
point in view 148
point in view, checking 148
returned clicked subview 140
scroll position 146
scroll position set 147
set position in container 145
size 145
size set 146
subviews 136

view-scroll-position generic function
146

:view-scroll-position keyword 132,
155, 482

view-size generic function 145, 162, 187, 188
dialog-item 193

:view-size keyword 131, 132, 155, 181, 189,
480, 482

view-subviews generic function 136
:view-subviews keyword 132, 155, 482
view-window function 144
visible-dimensions generic function 221
:visible-dimensions keyword 219
volume-number function 306
volumes

MCL operations related to volumes 306–
308

v-scroller generic function 488
%vstack-block macro 533

W
_WaitNextEvent trap 375
_WaitNextEvent trap
warn-if-redefine variable 317
warn-if-redefine-kernel variable 317
watch-cursor variable 177, 383
white-color variable 256
white-pattern variable 89
white-rgb variable 256
widmax 78, 81
:wild keyword 286
wildcards 298–299
:wild-inferiors keyword 286
windoid class 180
windoid-count variable 172, 181
782 Macintosh Common Lisp Reference

windoids
definition 128, 180

window class 154
window menu items 120–123

creating instances 122
window-activate-event-handler (See

view-activate-event-handler)
window-active-p generic function 171
window-buffer (See fred-buffer)
window-can-do-operation generic

function 179, 508
window-can-undo-p (obsolete MCL

function) 179
window-can-undo-p (obsolete MCL function)

508
window-can-undo-p generic function 211,

507
window-click-event-handler (See

view-click-event-handler)
window-close generic function 121, 160, 178
window-close-event-handler generic

function 369
window-cursor generic function 177
window-deactivate-event-handler (See

view-deactivate-event-
handler)

window-default-position variable
164, 171

window-default-size variable 164, 171
window-default-zoom-position generic

function 173
window-default-zoom-position

variable 174
window-default-zoom-size generic

function 175
window-default-zoom-size variable

175
window-defs-dialog generic function 121,

178
:window-do-first-clic keyword 156, 181
window-do-first-click generic function

369
:window-do-first-click keyword 483
window-drag-event-handler generic

function 368
window-drag-rect generic function 176
window-draw-grow-icon generic function

372
window-ensure-on-screen generic

function 171

window-eval-buffer generic function 178
window-eval-selection generic function

121, 178
window-eval-whole-buffer generic

function 121
window-event generic function 379
window-filename generic function 502
window-font (See view-font)
window-fred-item class 479
window-grow-event-handler generic

function 368
window-grow-rect generic function 176
window-hardcopy generic function 121, 178,

506
window-hide generic function 170
window-hpos (See fred-hpos)
window-key-handler generic function 487
window-key-up-event-handler generic

function 367
window-layer generic function 172
:window-layer keyword 155, 482
window-line-vpos (See fred-line-vpos)
window-menu-item class 122
window-mouse-position (See view-

mouse-position)
window-mouse-up-event-handler

generic function 367
window-needs-saving-p generic function

120, 179
window-null-event-handler generic

function 366
window-object function 177
window-on-screen-p generic function 171
window-package generic function 38
window-position (See view-position)
window-revert generic function 121, 178,

505
windows 153–181

activate 149, 173
active, checking 171
and dialog items 186
close 160
close event handler 369
color, find 168
color, return color list 169
color, set 169
colors 257, 258, 262
creating instances 154
cursor 177
cursor shape 177
Index 783

cursor show 493
deactivate 150
default zoom position 173, 174
default zoom size 175
definition 126, 127, 153
drag event handler 368
ensure on screen 171
floating 180–181
font 165
font codes 83, 167
font codes set 84, 167
font default 166
font spec set 166
font, use specific 134
functions, advanced 173
GrafPort, use specific 133, 178
grow event handler 368
hide 170
implementation 126
layer 172
layer set 172
layer set to front 173
MCL functions related to windows 154–

173
menu items 120
modified 502
pointer 143
position 161
position default 164
position set 161
printing 506
resize subviews 163
resizing 176
save 179
saving state information 40
select 173
set package 37, 38
setting background color 257, 258
setting foreground color 257, 258
setting position of Listener 667
setting size of Listener 668
show on screen 170
shown, checking 170
size 162, 176
size default 164
size set 163
switch position of active and target 59
title 165
title set 165
unsaved 33

visible, checking 171
wptr pointing at window object 177
zoom position 173
zoom size 175
zoom size set 175

windows function 157
window-save generic function 59, 121, 178,

505
window-save-as generic function 59, 121,

178, 505
window-select generic function 173
window-select-event-handler generic

function 367
window-set-not-modified generic

function 502
window-show generic function 170
:window-show keyword 155, 482
window-show-cursor generic function 493
window-shown-p generic function 170
window-size (See view-size)
window-size-parts generic function 163
windows-menu variable 98
window-start-mark (See fred-display-

start-mark)
window-title generic function 165
:window-title keyword 155, 244, 482
:window-type keyword 156, 483
window-update (See fred-update)
window-update-cursor generic function

133, 380, 382
window-update-event-handler generic

function 142, 370
window-vpos (See fred-vpos)
window-zoom-event-handler generic

function 368
window-zoom-position generic function

173
window-zoom-size generic function 175
with-aedescs macro 405
with-back-color macro 258
with-cstrs macro 545
with-cursor macro 380, 381, 382
with-dereferenced-handles macro 547
with-focused-dialog-item macro 201
with-focused-view macro 133, 178, 689
with-font-focused-view macro 134
with-fore-color macro 258
with-lock-grabbed macro 429
without-interrupts special form 178
without-interrupts special form 338, 379, 382,
784 Macintosh Common Lisp Reference

425
with-pointers macro 548
with-port macro 178
with-process-enqueued macro 432
with-pstrs macro 545
with-returned-pstrs macro 545
with-rgb macro 255
$WMgrPort constant 557
:word keyword 590, 591, 593, 605, 608, 611
%word-to-int function 613
:word-wrap-p keyword 481, 484
wptr

font codes 85
window object 177

wptr generic function 143
:wptr keyword 131, 156, 191, 483
wptr-font-codes function 85
:wrap-p keyword 482

X
x-coordinate of points 70
xor-region function 723

Y
yank 52
yank, rotating 52
y-coordinate of points 70
yellow-color variable 256
:yes-text keyword 241
y-or-n-dialog function 241

Z
zone-pointerp function 546
Index 785

The DIGITOOL Publishing System

This Digitool manual was written, edited, and
composed on a desktop publishing system
using Apple Macintosh computers and Adobe
FrameMaker software. Proof and final pages
were created on the Apple LaserWriter
printers. Line art was created using Adobe
Illustrator. PostScript®, the page-description
language for the LaserWriter, was developed
by Adobe Systems Incorporated.

Text type and display type are Palatino. Bullets
are ITC Zapf Dingbats®. Some elements, such
as program listings, are set in Apple Courier.

Writer for 2.0 release: Sarah Smith

Writers for 3.0 release: Ellen Golden and Becky
Spitz

Writer for 4.0 release: Andrew Shalit

Illustrator: Sandee Karr

Production: Julie Gilbert

Special thanks to Gary Byers, Steve Hain, Alice
Hartley, Steven Mitchell, William St. Clair,
Steve Strassmann, and to our skilled and
helpful alpha and beta testers.

	Contents
	Figures and tables
	Introduction: About This Book
	Documentation conventions
	Courier font
	Italics
	Definition formats
	Definition formats of CLOS generic functions
	The generic function initialize-instance
	Argument list punctuation
	Lisp syntax

	Chapter 1: Editing in Macintosh Common Lisp
	The MCL editor
	The editing window
	Working with the editor
	Creating new windows and opening files
	Adding text to a file
	Saving text to files
	Multiple Panes
	The minibuffer
	The kill ring and the Macintosh Clipboard
	Multiple fonts
	Packages
	Mode lines
	An in-package expression
	A set-window-package expression
	Finding a window’s package

	Fred parameters
	Normalizing *next-screen-context-lines*

	Editing in Macintosh style
	Editing in Emacs style
	The Control and Meta modifier keys
	Disabling dead keys

	Fred commands
	Help, documentation, and inspection functions
	Movement
	Selection
	Insertion
	Deletion
	Lisp operations
	Window and file operations
	Undo commands
	Numeric arguments
	Incremental searching in Fred
	Performing an incremental search
	Making additional searches
	Backing up with the Delete key
	Terminating an incremental search
	Doing another incremental search
	Special incremental search keystrokes

	The Fred Commands tool
	The Listener Commands tool
	The List Definitions tool
	The Search Files tool

	Chapter 2: Points and Fonts
	Points
	How Macintosh Common Lisp encodes points

	MCL functions relating to points
	Fonts
	Implementation of font specifications
	Implementation of font codes
	Functions related to font specifications
	Functions related to font codes

	System data

	Chapter 3: Menus
	How menus are created
	A sample menu file
	The menu-element class
	The menubar
	Menubar forms
	The built-in menus
	Menubar colors

	Menus
	MCL forms relating to menus
	MCL forms relating to elements in menus
	MCL forms relating to colors of menu elements
	Advanced menu features

	Menu items
	MCL forms relating to menu items
	MCL forms relating to menu item colors

	Window menu items
	Window menu item functions
	Window menu item class

	Updating the menubar
	The Apple menu
	Example: A font menu

	Chapter 4: Views and Windows
	Views and Windows
	What simple views do
	What views do
	What windows do
	Class hierarchy of views
	Summary
	For more information

	MCL expressions relating to simple views and views...
	Windows
	MCL functions for programming windows
	Advanced window features

	Supporting standard menu items
	Floating windows

	Chapter 5: Dialog Items and Dialogs
	Dialogs in Macintosh Common Lisp
	Dialog items
	Dialog boxes
	A simple way to design dialogs and program dialog ...
	Changes to dialogs in Macintosh Common Lisp as of ...

	Dialog items
	MCL forms relating to dialog items
	Advanced dialog item functions
	Specialized dialog items
	Buttons
	Default buttons
	Static text
	Editable text
	Checkboxes
	Radio buttons
	Table dialog items
	Pop-up menu dialog items
	Scroll-bar dialog items
	Sequence dialog items

	User-defined dialog items
	Dialogs
	Modal dialogs
	Modeless dialogs

	Simple turnkey dialog boxes
	MCL forms relating to dialogs

	Chapter 6: Color
	Color encoding in Macintosh Common Lisp
	MCL expressions governing color
	Operations on color windows
	Coloring user interface objects
	Part keywords
	Menu bar
	Menus
	Menu items
	Windows
	Dialog items
	Table dialog items

	Chapter 7: The Interface Toolkit
	The Interface Toolkit
	Loading the Interface Toolkit
	Editing menus with the Interface Toolkit
	Using the menu editing functionality
	Creating a new menu bar: Add New Menubar
	Getting back to the default menu bar: Rotate Menub...
	Deleting a menu bar: Delete Menubar
	Creating and editing menus: Add Menu
	Creating menu items
	Editing menu items
	Saving a menu bar
	Editing menu bar source code

	Editing dialogs with the Interface Toolkit
	Using the dialog-designing functionality
	Dialog-designing menu items
	Creating dialog boxes
	Adding dialog items
	Editing dialog items

	Chapter 8: File System Interface
	Filenames, physical pathnames, logical pathnames, ...
	Changes from earlier versions of Macintosh Common ...
	Printing and reading pathnames

	Pathname structure
	Macintosh physical pathnames
	Common Lisp logical pathnames
	Defining logical hosts
	Ambiguities in physical and logical pathnames
	More on namestrings and pathnames

	Creating and testing pathnames
	Parsing namestrings into pathnames
	The pathname escape character

	Loading files
	Macintosh default directories
	Structured directories
	Wildcards
	File and directory manipulation
	File operations
	Volume operations

	User interface
	Logical directory names

	Chapter 9: Debugging and Error Handling
	Debugging tools in Macintosh Common Lisp
	Compiler options
	Fred debugging and informational commands
	Debugging functions
	Error handling
	Functions extending Common Lisp error handling

	Break loops and error handling
	Functions and variables for break loops and error ...

	Stack Backtrace
	Single-expression stepper
	Tracing
	The Trace tool
	Expressions used for tracing

	Advising
	The Inspector
	The Inspector menu
	Inspector functions

	The Apropos tool
	The Get Info tool
	The Processes tool
	Miscellaneous Debugging Macros

	Chapter 10: Events
	Implementation of events in Macintosh Common Lisp
	How an event is handled
	MCL built-in event handlers
	Functions for redrawing windows
	Event information functions
	The event management system
	The cursor and the event system
	Event handlers for the Macintosh Clipboard
	MCL expressions relating to scrap handlers and scr...
	The Read-Eval-Print Loop
	Eval-Enqueue

	Chapter 11: Apple Events
	Implementation of Apple events
	Applications and Apple Events
	Application class and built-in methods
	New application methods
	Standard Apple event handlers
	Defining new Apple events
	Installing Apple event handlers
	Installing handlers for queued Apple event replies...

	Sending Apple events

	Chapter 12: Processes
	Processes in Macintosh Common Lisp
	Process priorities
	Creating processes
	Process attribute functions
	Run and arrest reason functions
	Starting and stopping processes
	Scheduler
	Locks
	Stack groups
	Miscellaneous Process Parameters

	Chapter 13: Streams
	Implementation of streams
	MCL expressions relating to streams
	Obsolete functions

	Chapter 14: Programming the Editor
	Fred Items and Containers
	Fred windows and Fred views
	Fred dialog items
	Buffers and buffer marks
	Copying and deletion mechanism: The kill ring

	MCL expressions relating to buffer marks
	Using multiple fonts
	Global font specifications
	Style vectors

	Functions for manipulating fonts and font styles

	Fred classes
	Fred functions
	Functions implementing standard editing processes
	Multiple-level Undo
	Functions relating to Undo

	Working with the kill ring
	Functions for working with the kill ring
	Using the minibuffer
	Functions for working with the minibuffer

	Defining Fred commands
	Fred command tables
	Keystroke codes and keystroke names
	Command tables
	Fred dispatch sequence
	MCL expressions associated with keystrokes
	MCL expressions relating to command tables

	Chapter 15: Low-Level OS Interface
	Interfacing to the Macintosh
	Macptrs
	Memory management
	Stack blocks
	Accessing memory

	Miscellaneous routines
	Strings, pointers, and handles
	Pascal VAR arguments
	The Pascal null pointer
	Callbacks to Lisp from the OS and other code
	Defpascal and Interrupts

	Chapter 16: OS Entry Points and Records
	Entry Points and Records
	References to entry points and records

	Loading and Calling Entry Points
	Calling entry points

	Traps in MCL 3.1
	Shared Library Entry Points in MCL 4.0
	Locating Entry Points in Shared Libraries
	Locating Shared Libraries
	Compile Time / Run Time Entry Location

	Defining Traps
	Examples of calling entry points
	Entry point types and Lisp types

	Records
	Installing record definitions
	The structure of records
	Defining record types
	Variant fields

	Creating records
	Creating temporary records with rlet
	Creating records with indefinite extent

	Accessing records
	Getting information about records
	Trap calls using stack-trap and register-trap
	Low-level stack trap calls
	Low-level register trap calls
	Macros for calling traps

	Notes on trap calls
	32-bit immediate quantities
	Boolean values: Pascal true and false

	Chapter 17: Foreign Function Interface
	Accessing Foreign Code in MCL 4.0 and 3.1
	Foreign Code in MCL 4.0
	Defining foreign code entry points

	Foreign Code in MCL 3.1
	Using the MCL 3.1 foreign function interface

	High-level Foreign Function Interface operations
	Argument specifications
	Result flags
	A Short example

	Low-level functions
	Calling Macintosh Common Lisp from foreign functio...
	Extended example

	Appendix A: Implementation Notes
	The Metaobject Protocol
	Metaobject classes defined in Macintosh Common Lis...
	Unsupported metaobject classes
	Unsupported Introspective MOP functions
	MCL functions relating to the Metaobject Protocol

	MCL class hierarchy
	Types and tag values
	Tags in MCL 3.1
	Tags in MCL 4.0
	Raw Object Access

	Reader macros undefined in Common Lisp
	Numeric arguments in pathnames
	Numbers
	Floating point numbers in MCL 4.0

	Characters and strings
	Ordering and case of characters and strings
	The script manager
	Script manager utilities
	String lengths

	Arrays
	Default array contents
	Array element types and sizes

	Packages
	Additional printing variables
	Memory management
	Garbage collection
	Ephemeral garbage collection
	Guidelines for enabling the EGC
	EGC in MCL 3.1
	Controlling the EGC
	Enabling the EGC programmatically

	Full garbage collection
	Garbage Collection Statistics

	Termination
	Termination in MCL 4.0
	Termination in MCL 3.1
	Macptrs and termination in MCL 3.1

	Evaluation
	Compilation
	Tail recursion elimination
	Self-referential calls
	Compiler policy objects

	Listener Variables
	Patches
	Miscellaneous MCL expressions

	Appendix B: Workspace Images
	The Image Facility
	The Save Application tool
	The Save Image Command
	Forms Related to Images
	Removing Macintosh pointers

	Appendix C: SourceServer
	SourceServer
	Setting up SourceServer
	The SourceServer menu
	Notes

	Appendix D: QuickDraw Graphics
	QuickDraw in Macintosh Common Lisp
	Windows, GrafPorts, and PortRects
	Points and rectangles
	Window state functions
	Pen and line-drawing routines
	Drawing text
	Calculations with rectangles
	Graphics operations on rectangles
	Graphics operations on ovals
	Graphics operations on rounded rectangles
	Graphics operations on arcs
	Regions
	Calculations with regions
	Graphics operations on regions

	Bitmaps
	Pictures
	Polygons
	Miscellaneous procedures

	Appendix E: MCL 4.0 CD Contents
	What is on the MCL 4.0 CD-ROM
	Highlights
	MCL 4.0
	MCL 3.1
	MCL 4.0 “Demo Version”
	MCL 4.0/3.1 Documentation
	MCL Floppy Disks
	Additional MCL Source Code
	Goodies from Digitool
	Goodies from MCL Friends
	User Contributed Code
	Developer Essentials
	Mail Archives & Other Docs
	Contents/Index
	On Location Indexes

	What is in the MCL 4.0 folder
	MCL 4.0
	MCL Help and MCL Help Map.pfsl
	Examples Folder
	Interface Tools folder
	Library folder
	ThreadsLib
	pmcl-kernel, pmcl-library, and pmcl-compiler

	Index

